Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Purpose: Glioblastoma multiforme is the most common malignant brain tumor. Standard treatment including surgery, radiotherapy and chemotherapy with temozolomide is not curative. There is a great need for in vitro and in vivo models closely mimicking clinical practice to ensure better translation of novel preclinical findings.
Methods And Materials: A 3D spheroid model was established using the U87MG cell line. The efficacy of temozolomide, RT and combinations was assessed using growth delay assays. Orthotopic glioblastoma tumors were established, different radiation doses delivered based on micro-CT based treatment planning (SmART-plan) and dose volume histograms (DVH) were determined. Tumor growth was monitored using bioluminescent imaging.
Results: 3D spheroid cultures showed a dose-dependent growth delay upon single and combination treatments. Precise uniform radiation was achieved in all in vivo treatment groups at all doses tested, and DVHs showed accurate dose coverage in the planning target volume which resulted in tumor growth delay.
Conclusion: We demonstrate that 3D spheroid technology can be reliably used for treatment efficacy evaluation and that mimicking a clinical setting is also possible in small animals. Both these in vitro and in vivo techniques can be combined for clinically relevant testing of novel drugs combined with radiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2015.06.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!