Objective: To evaluate the agreement and scan-rescan repeatability of automated and manual plaque segmentation for the quantification of in vivo carotid artery plaque components from multi-contrast MRI.

Materials And Methods: Twenty-three patients with 30-70% stenosis underwent two 3T MR carotid vessel wall exams within a 1 month interval. T1w, T2w, PDw and TOF images were acquired around the region of maximum vessel narrowing. Manual delineation of the vessel wall and plaque components (lipid, calcification, loose matrix) by an experienced observer provided the reference standard for training and evaluation of an automated plaque classifier. Areas of different plaque components and fibrous tissue were quantified and compared between segmentation methods and scan sessions.

Results: In total, 304 slices from 23 patients were included in the segmentation experiment, in which 144 aligned slice pairs were available for repeatability analysis. The correlation between manual and automated segmented areas was 0.35 for lipid, 0.66 for calcification, 0.50 for loose matrix and 0.82 for fibrous tissue. For the comparison between scan sessions, the coefficient of repeatability of area measurement obtained by automated segmentation was lower than by manual delineation for lipid (9.9 vs. 17.1 mm(2)), loose matrix (13.8 vs. 21.2 mm(2)) and fibrous tissue (24.6 vs. 35.0 mm(2)), and was similar for calcification (20.0 vs. 17.6 mm(2)).

Conclusion: Application of an automated classifier for segmentation of carotid vessel wall plaque components from in vivo MRI results in improved scan-rescan repeatability compared to manual analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651977PMC
http://dx.doi.org/10.1007/s10334-015-0495-2DOI Listing

Publication Analysis

Top Keywords

plaque components
20
vessel wall
12
loose matrix
12
fibrous tissue
12
carotid artery
8
artery plaque
8
scan-rescan repeatability
8
carotid vessel
8
manual delineation
8
wall plaque
8

Similar Publications

Background: This cross-sectional study aimed to compare the composition of the submucosal microbiome of peri-implantitis with paired and unpaired healthy implant samples.

Methods: We evaluated submucosal plaque samples obtained in 39 cases, including 13 cases of peri-implantitis, 13 cases involving healthy implants from the same patient (paired samples), and 13 cases involving healthy implants from different individuals (unpaired samples). The patients were evaluated using next-generation genomic sequencing (Illumina) based on 16S rRNA gene amplification.

View Article and Find Full Text PDF

Antimicrobial activity and applications in PMMA of a novel benzpyrole derivant/iodocuprate hybrid (TMBI)(CuI).

Bioorg Chem

January 2025

Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350004, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China. Electronic address:

Among individuals who wear removable dentures, there is a significant likelihood, reaching up to 70 %, of experiencing a condition known as denture-induced stomatitis. To address this issue, a commonly used method involves soaking dentures in denture cleansers to eliminate microorganisms. However, the prolonged use of this cleaning method has resulted in the emergence of drug resistance.

View Article and Find Full Text PDF

One-Step Fabrication of Water-Dispersible Calcium Phosphate Nanoparticles with Immobilized Lactoferrin for Intraoral Disinfection.

Int J Mol Sci

January 2025

General Dentistry, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo 060-8586, Japan.

Lactoferrin is a highly safe antibacterial protein found in the human body and in foods. Calcium phosphate (CaP) nanoparticles with immobilized lactoferrin could therefore be useful as intraoral disinfectants for the prevention and treatment of dental infections because CaP is a mineral component of human teeth. In this study, we fabricated CaP nanoparticles with co-immobilized lactoferrin and heparin using a simple one-step coprecipitation process.

View Article and Find Full Text PDF

Local characterization of collagen architecture and mechanical properties of tissue engineered atherosclerotic plaque cap analogs.

Acta Biomater

January 2025

Department of Cardiology, Biomedical Engineering, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands.

Many cardiovascular events are triggered by fibrous cap rupture of an atherosclerotic plaque in arteries. However, cap rupture, including the impact of the cap's structural components, is poorly understood. To obtain better mechanistic insights in a biologically and mechanically controlled environment, we previously developed a tissue-engineered fibrous cap model.

View Article and Find Full Text PDF

A 52-year-old man with a short chronic total occlusion in the left superficial femoral artery underwent drug-coated balloon (DCB) angioplasty. Evaluation using integrated backscatter intravascular ultrasound revealed that the plaque volume of fibrosis was compressed just after treatment (from 494.67 mm to 398.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!