A novel series of etravirine-VRX-480773 hybrids were designed using structure-guided molecular hybridization strategy and fusing the pharmacophore templates of etravirine and VRX-480773. The anti-HIV-1 activity and cytotoxicity was evaluated in MT-4 cell cultures. The most active hybrid compound in this series, N-(2-chlorophenyl)-2-((4-(4-cyano-2,6-dimethylphenoxy)pyrimidin-2-yl)thio)acetamide 3d (EC50=0.24 , SI>1225), was more potent than delavirdine (EC50=0.66 μM, SI>67) in the anti-HIV-1 in vitro cellular assay. Studies of structure-activity relationships established a correlation between anti-HIV activity and the substitution pattern of the acetanilide group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2015.06.048 | DOI Listing |
Eur J Med Chem
September 2015
Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
Based on molecular simulation, the etravirine-VRX-480773 hybrids previously disclosed by our group were optimized to yield novel pyrimidine sulfonylacetanilides 8 with improved activity against a panel of seven clinically relevant single and double mutant strains of HIV-1. The improvement in potency in this in vitro model of HIV RNA replication partly validates the mechanism by which this class of allosteric pyrimidine derivatives inhibits the reverse transcriptase (RT), and represents a remarkable step forward in the development of anti-HIV drugs.
View Article and Find Full Text PDFBioorg Med Chem
August 2015
Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroedersstraat, B-3000 Leuven, Belgium.
A novel series of etravirine-VRX-480773 hybrids were designed using structure-guided molecular hybridization strategy and fusing the pharmacophore templates of etravirine and VRX-480773. The anti-HIV-1 activity and cytotoxicity was evaluated in MT-4 cell cultures. The most active hybrid compound in this series, N-(2-chlorophenyl)-2-((4-(4-cyano-2,6-dimethylphenoxy)pyrimidin-2-yl)thio)acetamide 3d (EC50=0.
View Article and Find Full Text PDFEur J Med Chem
June 2015
Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
A novel series of piperidin-4-yl-aminopyrimidine derivatives were designed fusing the pharmacophore templates of etravirine-VRX-480773 hybrids our group previously described and piperidine-linked aminopyrimidines. Most compounds displayed significantly improved activity against wild-type HIV-1 with EC50 values in single-digit nanomolar concentrations compared to etravirine-VRX-480773 hybrids. Selected compounds were also evaluated for activity against reverse transcriptase, and had lower IC50 values than that of nevirapine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!