The most critical steps during the conservation-restoration treatment applied in Moroccan libraries are the deacidification using immersion in a saturated aqueous calcium hydroxide (Ca(OH)2) solution and the consolidation of degraded manuscripts using Japanese paper. The present study aims to assess the efficiency of this restoration method using a multi-analytical approach. For this purpose, three ancient Arabic Moroccan manuscript papers dating back to the 16th, 17th, and 18th centuries were investigated to characterize the paper support and make a comparative study between pre-restoration and post-restoration states. Three structural and molecular characterization techniques including solid-state nuclear magnetic resonance spectroscopy on (13)C with cross-polarization and magic-angle spinning nuclear magnetic resonance ((13)C CP-MAS NMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), and X-ray diffraction (XRD) were used to elucidate the cellulose main features, to identify the inorganic composition of the papers, and to study the crystallinity of the samples. Inductively coupled plasma atomic emission spectrometry (ICP-AES) allowed us to obtain a qualitative and quantitative characterization of the mineral fillers used in the manufacturing of the papers. Scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) ascertained the state of conservation of the different papers and helped us to study the elemental composition of the samples. After restoration, it was shown that the deacidification improved the stability of papers by providing an important alkaline buffer, as demonstrated using FT-IR and energy dispersive spectrometry (EDS) results. However, XRD and ICP-AES did not confirm the pertinence of the treatment for all samples because of the unequal distribution of Ca on the paper surface during the restoration. The consolidation process was studied using SEM analysis; its effectiveness in restoring torn areas was found to be significant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1366/14-07688 | DOI Listing |
Molecules
December 2024
Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, 98168 Messina, Italy.
A multi-analytical approach was used to comprehensively characterize the acid-base, thermal, and surface properties of agri-food processing wastes (i.e., original and pre-treated bergamot, grape and olive pomaces).
View Article and Find Full Text PDFJ Anal Toxicol
November 2024
FT-LAB, Department of Health Science, University of Florence.
Molecules
November 2024
Department of Chemistry and Industrial Chemistry, University of Pisa, I-56123 Pisa, Italy.
The National Museum of Transylvanian History in Cluj-Napoca, Romania, features a History of Pharmacy Collection that documents the evolution of pharmacies in the region since the 16th century. Within the "Pharmatrans" project (2021-2023), we investigated the chemical composition of ointments from fourteen historical pharmaceutical containers dating back to the 18th and 19th centuries. Most samples were from an aristocratic traveling medicine chest, a key artifact in the collection.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan 250001, China. Electronic address:
Microplastic contamination has emerged as a global environmental concern, while the limitation of single-technique identification methods in complex biological matrices calls for multi-analytical approaches for accurate microplastic detection. This study pioneers a dual-method approach, combining Raman spectroscopy and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS), to investigate microplastics in human amniotic fluid. In total, samples from 48 pregnant women were collected and analyzed under stringent quality control measures, then Raman spectroscopy and Py-GC/MS were employed for comprehensive polymer identification and verification.
View Article and Find Full Text PDFJ Appl Microbiol
October 2024
Department of Biology and Biotechnologies, Sapienza University of Rome, Rome 00185, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!