Metabolic diversity is an important factor during microbial adaptation to different environments. Among metabolic processes, amino acid biosynthesis has been demonstrated to be relevant for survival for many microbial pathogens, whereas the association between pathogenesis and amino acid uptake and recycling are less well-established. Cryptococcus neoformans is an opportunistic fungal pathogen with many habitats. As a result, it faces frequent metabolic shifts and challenges during its life cycle. Here we studied the C. neoformans tryptophan biosynthetic pathway and found that the pathway is essential. RNAi indicated that interruptions in the biosynthetic pathway render strains inviable. However, auxotroph complementation can be partially achieved by tryptophan uptake when a non preferred nitrogen source and lower growth temperature are applied, suggesting that amino acid permeases may be the target of nitrogen catabolism repression (NCR). We used bioinformatics to search for amino acid permeases in the C. neoformans and found eight potential global permeases (AAP1 to AAP8). The transcriptional profile of them revealed that they are subjected to regulatory mechanisms which are known to respond to nutritional status in other fungi, such as (i) quality of nitrogen (Nitrogen Catabolism Repression, NCR) and carbon sources (Carbon Catabolism Repression, CCR), (ii) amino acid availability in the extracellular environment (SPS-sensing) and (iii) nutritional deprivation (Global Amino Acid Control, GAAC). This study shows that C. neoformans has fewer amino acid permeases than other model yeasts, and that these proteins may be subjected to complex regulatory mechanisms. Our data suggest that the C. neoformans tryptophan biosynthetic pathway is an excellent pharmacological target. Furthermore, inhibitors of this pathway cause Cryptococcus growth arrest in vitro.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498599 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132369 | PLOS |
Arab J Gastroenterol
January 2025
Department of Pediatric Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430015, China.
Background And Study Aims: Hirschsprung disease (HD) is a complex developmental disease that resulted from impaired proliferation and migration of neural crest cells. Despite the genetic causation of enteric nervous system have been found to be responsible for part of HD cases, the genetic aetiology of most HD patients still needs to be explored.
Patients And Methods: Whole-genome sequencing and subsequent Sanger sequencing validation analysis were performed in 13 HD children and their unaffected parents.
Neurobiol Dis
January 2025
The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Psychiatry, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, TX, United States of America. Electronic address:
Loss of function in the subunits of the GTPase-activating protein (GAP) activity toward Rags-1 (GATOR1) complex, an amino-acid sensitive negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), is implicated in both genetic familial epilepsies and NDDs (Baldassari et al., 2018). Previous studies have found seizure phenotypes and increased activity resulting from conditional deletion of GATOR1 function from forebrain excitatory neurons (Yuskaitis et al.
View Article and Find Full Text PDFPlacenta
December 2024
Ageing and Stress Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Faculdade de Medicina Veterinária da Universidade Lusófona e Instituto Politécnico da Lusofonia, COFAC - Cooperativa de Formação e Animação Cultural, C.R.L., Campo Grande 376, 1749-024, Lisboa, Portugal; Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal. Electronic address:
Background And Aim: Pregnancy after the age of 35 is correlated with an increased risk of impaired placentation and the development of pregnancy-associated complications. Changes in uterine redox balance seem to play a role in these settings. In this work, we hypothesized that local redox dysregulation impacts the placenta metabolic profile.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
The application of biodegradable chelating agents in phytoremediation is a promising approach. This study aimed to investigate the effects and roles of underlying mechanisms of water-soluble carboxymethyl chitosan (WSCC) and rhamnolipids (RLs) on the remediation of Cd-contaminated soil by Hylotelephium spectabile. WSCC and RLs mediated the growth of H.
View Article and Find Full Text PDFBioorg Chem
January 2025
Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
An α-l-Rhamnosidase gene with an open reading frame of 3192 bp encoding a 1036-amino acid protein (EhRha) was cloned from Emiliania huxleyi for flavonoid hydrolysis on the cell surface of Pichia pastoris (P. pastoris) strain GS115 by fusing with the anchor protein (AGα1) from Saccharomyces cerevisiae. Fluorescence microscopy and flow cytometry assays revealed that EhRha was successfully displayed on the cell surface of P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!