Resistive random access memory (ReRAM) devices have been extensively investigated resulting in significant enhancement of switching properties. However fluctuations in switching parameters are still critical weak points which cause serious failures during 'reading' and 'writing' operations of ReRAM devices. It is believed that such fluctuations may be originated by random creation and rupture of conducting filaments inside ReRAM oxides. Here, we introduce defective monolayer graphene between an oxide film and an electrode to induce confined current path distribution inside the oxide film, and thus control the creation and rupture of conducting filaments. The ReRAM device with an atomically thin interlayer of defective monolayer graphene reveals much reduced fluctuations in switching parameters compared to a conventional one. Our results demonstrate that defective monolayer graphene paves the way to reliable ReRAM devices operating under confined current path distribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498384PMC
http://dx.doi.org/10.1038/srep11279DOI Listing

Publication Analysis

Top Keywords

defective monolayer
16
monolayer graphene
16
confined current
12
current path
12
path distribution
12
reram devices
12
atomically thin
8
fluctuations switching
8
switching parameters
8
creation rupture
8

Similar Publications

Self-assembled hole-selective contact for efficient Sn-Pb perovskite solar cells and all-perovskite tandems.

Nat Commun

January 2025

College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China.

Self-assembled monolayers (SAMs) have displayed unpredictable potential in efficient perovskite solar cells (PSCs). Yet most of SAMs are largely suitable for pure Pb-based devices, precisely developing promising hole-selective contacts (HSCs) for Sn-based PSCs and exploring the underlying general mechanism are fundamentally desired. Here, based on the prototypical donor-acceptor SAM MPA-BT-BA (BT), oligoether side chains with different length (i.

View Article and Find Full Text PDF

Background: Liquid-based cytology (LBC) is a newer method of preparing cervical cell samples. This technique involves collecting cells in a liquid fixative and preparing and evaluating them.

Aim: This study aims to investigate cervical smears prepared using the Ezi-Prep LBC method and analyze the positivity rate for cervical cancer and assess the diagnostic accuracy of LBC in detecting cervical abnormalities among females with abnormal vaginal conditions attending a tertiary care center.

View Article and Find Full Text PDF

Highly Strained Polymeric Monolayer Stacked for Wafer-Scale and Transferable Nanodielectrics.

ACS Nano

December 2024

Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.

As the keystones of molecular electronics, high-quality nanodielectric layers are challenging to assemble due to the strictest criteria for their reliability and uniformity over a large area. Here, we report a strained poly(4-vinylphenol) monolayer, ready to be stacked to form defect-free wafer-scale nanodielectrics. The thickness of the nanodielectrics can be precisely adjusted in integral multiples of the 1.

View Article and Find Full Text PDF

Two-dimensional (2D) β-TeO has gained attention as a promising material for optoelectronic and power device applications, thanks to its transparency and high hole mobility. However, the mechanisms driving its -type conductivity and dopability remain elusive. In this study, we investigate the intrinsic and extrinsic point defects in monolayer and bilayer β-TeO, the latter of which has been experimentally synthesized, using the Heyd-Scuseria-Ernzerhof (HSE) + D3 hybrid functional.

View Article and Find Full Text PDF

The chemical engineering of nanostructures with atomic-scale precision is a fundamental scientific challenge. Cation exchange reactions in nanoplatelets (NPLs) offer an attractive platform for this precision chemistry, as it is relatively simple to carry out, extremely versatile, and allows the production of heterogeneous nanostructures that cannot be produced by any other means. A major hindrance has, however, been the lack of knowledge of the "weak spots" of the platelets where the ionic exchange reaction is initiated to optimally control the process toward directed nanoscale assemblies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!