PLoS One
National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
Published: April 2016
To understand the molecular basis of higher pH catalytic adaptation of family 11 xylanases, we compared the structures of alkaline, neutral, and acidic active xylanases and analyzed mutants of xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5. It was revealed that alkaline active xylanases have increased charged residue content, an increased ratio of negatively to positively charged residues, and decreased Ser, Thr, and Tyr residue content relative to non-alkaline active counterparts. Between strands β6 and β7, alkaline xylanases substitute an α-helix for a coil or turn found in their non-alkaline counterparts. Compared with non-alkaline xylanases, alkaline active enzymes have an inserted stretch of seven amino acids rich in charged residues, which may be beneficial for xylanase function in alkaline conditions. Positively charged residues on the molecular surface and ionic bonds may play important roles in higher pH catalytic adaptation of family 11 xylanases. By structure comparison, sequence alignment and mutational analysis, six amino acids (Glu16, Trp18, Asn44, Leu46, Arg48, and Ser187, numbering based on Xyn11A-LC) adjacent to the acid/base catalyst were found to be responsible for xylanase function in higher pH conditions. Our results will contribute to understanding the molecular mechanisms of higher pH catalytic adaptation in family 11 xylanases and engineering xylanases to suit industrial applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498622 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132834 | PLOS |
Int J Mol Sci
December 2024
Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071, Russia.
The filamentous fungus (anamorph ) has been shown to be an efficient producer of secreted cellulases, used in biorefinery processes. Understanding the mechanisms of regulation of cellulase gene expression in the fungus is a current task in industrial biotechnology, since it allows for targeted changes in the composition of the complex secreted by the fungus. Expression of cellulase genes in fungi is regulated mainly at the level of transcription via pathway-specific transcription factors (TF), the majority of which belong to the Zn(II)2Cys6 family of zinc binuclear cluster proteins.
View Article and Find Full Text PDFFront Microbiol
November 2024
College of Forestry, Sichuan Agricultural University, Chengdu, China.
Rhombic-spot disease, caused mainly by , significantly impacts the yield and quality of fishscale bamboo (). Xylanases are essential for pathogenic fungi infection, yet their specific functions in the physiology and pathogenicity of remain unclear. Here, we characterized three xylanase proteins with glycosyl hydrolase 11 domains from the SICAUCC 16-0001 genome and examined the function of Nsxyn1 and Nsxyn2.
View Article and Find Full Text PDFArch Biochem Biophys
November 2024
Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India. Electronic address:
Microorganisms
November 2024
Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia.
The phylum is one of the main groups of soil prokaryotes, which remains poorly represented by cultivated organisms. The major recognized role of in soils is the degradation of plant-derived organic matter. These bacteria are particularly abundant in peatlands, where xylan-type hemicelluloses represent one of the most actively decomposed peat constituents.
View Article and Find Full Text PDFPoult Sci
December 2024
CJ Cheiljedang Co., Seoul 04560, Republic of Korea. Electronic address:
Xylanases require thermal stability to withstand the pelleting process, pH stability to function in the gastrointestinal tract, and resistance to xylanase inhibitors in raw materials to be effective in animal feed. A GH11 family xylanase originating from an anaerobic fungus, Orpinomyces sp. strain PC-2, has high specific activity and resistance to xylanase inhibitors intrinsically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.