Thin Layer Ionophore-Based Membrane for Multianalyte Ion Activity Detection.

Anal Chem

Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland.

Published: August 2015

A concept is introduced that allows one to detect the activity of multiple ions simultaneously and selectively with a single ion-selective membrane. This is demonstrated with ∼300 nm thin plasticized PVC membranes containing up to two ionophores in addition to a lipophilic cation-exchanger, overlaid on an electropolymerized poly-3-octylthiophene (POT) film as the electron to ion transducer. The ion-selective membranes are formulated under ionophore depleted conditions (avoiding excess of ionophore over ion-exchanger), which is purposely different from common practice with ion-selective electrodes. Cyclic voltammetry is used to interrogate the films. An anodic scan partially oxidizes the POT underlayer, which results in the expulsion of cations from the membrane at an appropriate potential. During the scan of a membrane containing multiple ionophores, the least bound ion is expelled first, giving distinct Gaussian peak shaped ion transfer voltammetric waves that are analyzed in terms of their peak potential. These potentials are found to change with the logarithm of the ion activity, in complete analogy to ion-selective electrodes, and multiple such waves are observed with multiple ionophores that exhibit no obvious interference from the other ionophores present in the membrane. The concept is established with lithium and calcium ionophores and accompanied by a response model that assumes complete equilibration of the membrane at every applied potential. On the basis of the model, diffusion coefficients in the membrane or aqueous phase bear no influence on the peak potentials as long as thin layer behavior is observed, further confirming the analogy to a potentiometric experiment. Idealized ion transfer waves are narrower than experimental findings, which is explained by a broader than expected anodic peak for the oxidation of conducting polymer. The correspondence between experiment and theory is otherwise excellent in terms of thin layer behavior and Nernstian shift of the peaks with analyte concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5b01459DOI Listing

Publication Analysis

Top Keywords

thin layer
12
ion activity
8
ion-selective electrodes
8
multiple ionophores
8
ion transfer
8
layer behavior
8
membrane
7
ion
6
ionophores
5
thin
4

Similar Publications

Analytical Model for Atomic Relaxation in Twisted Moiré Materials.

Phys Rev Lett

December 2024

National University of Singapore, Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117575.

By virtue of being atomically thin, the electronic properties of heterostructures built from two-dimensional materials are strongly influenced by atomic relaxation. The atomic layers behave as flexible membranes rather than rigid crystals. Here we develop an analytical theory of lattice relaxation in twisted moiré materials.

View Article and Find Full Text PDF

Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).

View Article and Find Full Text PDF

Development of a novel molecular probe for visualizing mesothelin on the tumor via positron emission tomography.

Eur J Nucl Med Mol Imaging

January 2025

Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.

Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).

View Article and Find Full Text PDF

This study presents an innovative glucose detection platform, featuring a highly sensitive, non-enzymatic glucose sensor. The sensor integrates nickel nanowires and a graphene thin film deposited on the gate region of an extended-gate electric double-layer field-effect transistor (EGEDL-FET). This unique combination of materials and device structure enables superior glucose sensing performance.

View Article and Find Full Text PDF

Some microbes in the rumen form 10,12 (10,12)-conjugated linoleic acid (CLA), a fatty acid that depresses synthesis of milk fat in dairy cattle and other lactating animals. Despite their importance to milk fat depression, the microbes responsible have been difficult to identify, and no laboratory strain is currently available for study. Here we describe the isolation of AP1, a bacterium that forms 10,12-CLA at fast rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!