How reliable are crystalline silica dust concentration measurements?

Regul Toxicol Pharmacol

Sandler Occupational Medicine Associates, Inc., 12700 Sunrise Valley Dr, Suite 405, Reston, VA 20191, USA.

Published: October 2015

To determine how reliably commercial laboratories measure crystalline silica concentrations corresponding to OSHA's proposed limits, 105 filters were prepared with known masses of 20, 40, and 80 μg of respirable quartz corresponding to airborne silica concentrations of 25, 50, and 100 μg/m(3) and were submitted, in a blind test, to qualified commercial laboratories over a nine month period. Under these test conditions, the reported results indicated a lack of accuracy and precision needed to reliably inform regulatory compliance decisions. This was true even for filters containing only silica, without an interfering matrix. For 36 filters loaded with 20 or more micrograms of silica, the laboratories reported non-detected levels of silica. Inter-laboratory variability in this performance test program was so high that the reported results could not be used to reliably discriminate among filters prepared to reflect 8-h exposures to respirable quartz concentrations of 25, 50 and 100 μg/m(3). Moreover, even in intra-laboratory performance, there was so much variability in the reported results that 2-fold variations in exposure concentrations could not be reliably distinguished. Part of the variability and underreporting may result from the sample preparation process. The results of this study suggest that current laboratory methods and practices cannot necessarily be depended on, with high confidence, to support proposed regulatory standards with reliable data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yrtph.2015.07.001DOI Listing

Publication Analysis

Top Keywords

crystalline silica
8
commercial laboratories
8
silica concentrations
8
filters prepared
8
respirable quartz
8
concentrations 100
8
100 μg/m3
8
silica
6
reliable crystalline
4
silica dust
4

Similar Publications

Objective: The mucosal origin hypothesis in rheumatoid arthritis (RA) posits that inhalant exposures, such as cigarette smoke and crystalline silica (c-silica), trigger immune responses contributing to disease onset. Despite the established risk posed by these exposures, the mechanistic link between inhalants, lung inflammation, and inflammatory arthritis remains poorly understood, partly from the lack of a suitable experimental model. As c-silica accelerates autoimmune phenotypes in lupus models and is a recognized risk factor for several autoimmune diseases, we investigated whether c-silica exposure could induce RA-like inflammatory arthritis in mice.

View Article and Find Full Text PDF

Influence of macrophages and neutrophilic granulocyte-like cells on crystalline silica-induced toxicity in human lung epithelial cells.

Toxicol Res (Camb)

February 2025

Département Toxicologie et Biométrologie, Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), 1 rue du Morvan, 54519 Vandœuvre-lès-Nancy, France.

In many industrial activities, workers may be exposed by inhalation to particles that are aerosolized, To predict the human health hazard of these materials, we propose to develop a co-culture model (macrophages, granulocytes, and alveolar epithelial cells) designed to be more representative of the inflammatory pulmonary response occurring in vivo. Phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells were used as macrophages, All-trans retinoic acid (ATRA)-differentiated HL60 were used as granulocytes and A549 were used as epithelial alveolar type II cells. A crystalline silica sample DQ12 was used as a prototypical particle for its capabilities to induce DNA damage, inflammatory response, and oxidative stress in epithelial cells; its polyvinylpyridine-N-oxide (PVNO)-surface modified counterpart was also used as a negative particulate control.

View Article and Find Full Text PDF

NIR-Reflective Black Photonic Films Designed for Effective LiDAR Recognition.

ACS Appl Mater Interfaces

January 2025

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Conventional dark-tone paints absorb both visible light and near-infrared (NIR) wavelengths, posing a challenge for light detection and ranging (LiDAR) recognition in autonomous driving. To overcome this issue, various chemical and structural coating materials have been explored to selectively reflect NIR. In this study, we newly propose colloidal photonic crystals with a stopband in the NIR range, fabricated through the spontaneous formation of crystalline arrays of silica particles dispersed in a photocurable resin, as a potential solution.

View Article and Find Full Text PDF

In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption.

View Article and Find Full Text PDF

All-Optical Generation and Detection of Coherent Acoustic Vibrations in Single Gallium Phosphide Nanoantennas Probed near the Anapole Excitation.

Nano Lett

January 2025

Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

Nanostructured high-index dielectrics have shown great promise as low-loss photonic platforms for wavefront control and enhancing optical nonlinearities. However, their potential as optomechanical resonators has remained unexplored. In this work, we investigate the generation and detection of coherent acoustic phonons in individual crystalline gallium phosphide nanodisks on silica in a pump-probe configuration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!