Background: Serotonin plays a critical role in the regulation of food intake. The solute carrier family 6 member 14 (SLC6A14) and serotonin receptor 2C (5-HTR2C) genes are involved in the bioavailability and action of this neurotransmitter.
Objective: Evaluation of the association of six polymorphisms in these genes with food intake and nutritional status in children followed to 7-8years of age.
Design: Blood samples and the biodemographic data of 344 children were collected at three development stages, in a cross-sectional study undertaken with the cohort from a randomized trial. Polymorphisms were analyzed using polymerase chain reaction-based techniques.
Results: At 7 to 8years of age, carriers of the A alleles for both the SLC6A14 rs2312054 and SLC6A14 rs12391221 polymorphisms showed higher food intake, except for the sugar-dense food (SDF) intake parameter, than T/T and C/C homozygotes, respectively. Boy carriers of the C allele of rs2071877 had a higher sum of triceps and subscapular folds than T allele carriers at 7 to 8years old. For 5-HTR2C gene variants, A allele carriers (rs3813928) and T allele carriers (rs3813929) had higher food intake at 3 to 4years old than G/G and C/C homozygotes, respectively, except for SDF. At this age, the intake of energy-dense foods was higher in carriers of the T allele (rs3813929) than in C/C homozygotes.
Conclusion: This study provides evidence that genetic variants of these proteins might be involved in the determination of food intake and nutritional status in children.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiochem.2015.07.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!