Karyotypes of 3 diploid wheat species containing different variants of the A-genome, Triticum boeoticum (A(b)), T. monococcum (A(b)), and T. urartu (A(u)), were examined using C-banding and FISH with DNA probes representing 5S and 45S rDNA families, the microsatellite sequences GAAn and GTTn, the already known satellite sequences pSc119.2, Spelt52, Fat, pAs1, and pTa535, and a newly identified repeat called Aesp_SAT86. The C-banding patterns of the 3 species in general were similar; differences were observed in chromosomes 4A and 6A. Besides 2 major 45S rDNA loci on chromosomes 1A and 5A, 2 minor polymorphic NORs were observed in the terminal part of 5AL and in the distal part of 6AS in all species. An additional minor locus was found in the distal part of 7A(b)L of T. boeoticum and T. monococcum, but not in T. urartu. Two 5S rDNA loci were observed in 1AS and 5AS. The pTa535 probe displayed species- and chromosome-specific hybridization patterns, allowing complete chromosome identification and species discrimination. The distribution of pTa535 on the A(u)-genome chromosomes was more similar to that on the A-genome chromosomes of T. dicoccoides and T. araraticum, thus confirming the origin of these genomes from T. urartu. The probe pAs1 allowed the identification of 4 chromosomes of T. urartu and 2 of T. boeoticum or T. monococcum. The Aesp_SAT86-derived patterns were polymorphic; main clusters were observed on chromosomes 1A(u )and 3A(u) of T. urartu and chromosomes 3A(b) and 6A(b) of T. boeoticum. Thus, a set of probes, pTa535, pAs1, GAAn and GTTn, pTa71, pTa794, and Aesp_SAT86, proved to be most informative for the analysis of A-genomes in diploid and polyploid wheat species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000433458 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!