Osteogenesis disorder is involved in osteoporosis and other related bone diseases, in which osteogenic differentiation is essential. Osteogenic differentiation is a complicated process regulated by intricate signal transduction networks. It has been reported that low-power laser irradiation (LPLI) has an osteogenic potential by promoting osteoblast differentiation. However, the molecular mechanisms remain to be understood. In this study, we reveal a novel mechanism that Akt/GSK3β/TAZ (transcriptional co-activator with PDZ-binding motif) signaling pathway plays a crucial role in LPLI-enhanced osteoblast differentiation. Photomodulation by LPLI activated Akt/GSK3β pathway which inhibited TAZ phosphorylation, leading to the increase of TAZ protein level and nuclear aggregation. Meanwhile, knockdown of TAZ suppressed osteogenic differentiation promoted by LPLI. Further study showed that LPLI promoted the interaction between TAZ and core-binding factor 1 (Cbfa1), up-regulating the transcription of osteopontin (OPN) and osteocalcin (OCN) and the activity of alkaline phosphatase (ALP). However, inhibition of Akt/GSK3β pathway reversed the effects of TAZ on osteogenic differentiation induced by LPLI. Taken together, for the first time, we report that LPLI promotes osteoblast differentiation via TAZ activation dependent on Akt/GSK3β signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2015.07.002 | DOI Listing |
In Vivo
December 2024
Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China;
Background/aim: This study aimed to investigate the safety and efficacy of deferoxamine (DFO) pretreated feline adipose tissue derived mesenchymal stem cells (fATMSCs) for the treatment of inflammatory disorders.
Materials And Methods: fATMSCs were isolated from feline adipose tissue and characterized using flow cytometry for surface marker expression and differentiation assays for adipogenic, osteogenic, and chondrogenic lineages. Different concentrations of DFO were used to evaluate its impact on fATMSC activity.
J Control Release
December 2024
Department of Traumatology and Orthopaedic Surgery, Huizhou Central People's Hospital, Huizhou 516001, China; Hui Zhou-Hong Kong Bone Health Joint Research Center, Institute of Orthopaedics, Huizhou Central People's Hospital, Huizhou 516001, China. Electronic address:
Bacterial infections evoke considerable apprehension in orthopedics. Traditional antibiotic treatments exhibit cytotoxic effects and foster bacterial resistance, thereby presenting an ongoing and formidable obstacle in the realm of therapeutic interventions. Achieving bacterial eradication and osteogenesis are critical requirements for bone infection treatment.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China. Electronic address:
Background: Ankylosing spondylitis (AS) is an autoimmune disease characterized by dysfunction of the immune system, which leads to chronic inflammation and progressive ossification of spinal ligaments. The precise pathogenesis of this condition remains unclear, thereby impeding the development of effective treatments.
Methods: We analyzed the GSE25101 dataset and identified the aberrant expression and potential pathogenic role of TXN.
Biomed Mater
December 2024
Department of Paper Technology, Indian Institute of Technology Roorkee, Department of Paper Technology, IIT Roorkee, Saharanpur, 247001, INDIA.
The advancement in the arena of bone tissue engineering persuades us to develop novel nanocomposite scaffolds in order to improve antibacterial, osteogenic, and angiogenic properties that show resemblance to natural bone extracellular matrix. Here, we focused on the development of novel zinc-doped hydroxyapatite (ZnHAP) nanoparticles (1, 2 and 3 wt%; size: 50-60 nm) incorporated chitosan-gelatin nanocomposite scaffold, with an interconnected porous structure. The addition of ZnHAP nanoparticles decreases the pore size (~30 µm) of the chitosan gelatin scaffold.
View Article and Find Full Text PDFJ Orthop Res
December 2024
Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
This study investigates the therapeutic potential of Msx1-overexpressing bone marrow mesenchymal stem cells (BMSCs) in enhancing tendon-bone healing in rotator cuff injuries. BMSCs were genetically modified to overexpress Msx1 and were evaluated in vitro for their proliferation, migration, and differentiation potential. Results demonstrated that Msx1 overexpression significantly increased BMSC proliferation and migration while inhibiting osteogenic and chondrogenic differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!