Innate Immune Defenses Mediated by Two ILC Subsets Are Critical for Protection against Acute Clostridium difficile Infection.

Cell Host Microbe

Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address:

Published: July 2015

Infection with the opportunistic enteric pathogen Clostridium difficile is an increasingly common clinical complication that follows antibiotic treatment-induced gut microbiota perturbation. Innate lymphoid cells (ILCs) are early responders to enteric pathogens; however, their role during C. difficile infection is undefined. To identify immune pathways that mediate recovery from C. difficile infection, we challenged C57BL/6, Rag1(-/-) (which lack T and B cells), and Rag2(-/-)Il2rg(-/-) (Ragγc(-/-)) mice (which additionally lack ILCs) with C. difficile. In contrast to Rag1(-/-) mice, ILC-deficient Ragγc(-/-) mice rapidly succumbed to infection. Rag1(-/-) but not Ragγc(-/-) mice upregulate expression of ILC1- or ILC3-associated proteins following C. difficile infection. Protection against infection was restored by transferring ILCs into Ragγc(-/-) mice. While ILC3s made a minor contribution to resistance, loss of IFN-γ or T-bet-expressing ILC1s in Rag1(-/-) mice increased susceptibility to C. difficile. These data demonstrate a critical role for ILC1s in defense against C. difficile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537644PMC
http://dx.doi.org/10.1016/j.chom.2015.06.011DOI Listing

Publication Analysis

Top Keywords

difficile infection
16
ragγc-/- mice
16
difficile
8
clostridium difficile
8
rag1-/- mice
8
infection
7
mice
6
innate immune
4
immune defenses
4
defenses mediated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!