A detailed 3D Monte Carlo simulation of the grid geometrical parameters in screen-film mammography (SFM) and digital mammography (DM) systems has been performed. A combination of IEC 60627:2013 international standard conditions and other more clinically relevant parameters were used for this simulation. Accuracy of our results has been benchmarked with previously published data and good agreement has been obtained. Calculations in a wide range of linear anti-scatter grid geometries have been carried out. The evaluated parameters for the SFM system were the Bucky factor (BF) and contrast improvement factor (CIF) and for the DM system it was signal difference-to-noise ratio improvement factor (SIF). The CIF parameter was chosen to be nearly the same as the commercial grade, the BF and SIF were significantly improved compared to commercial grids in use today. Our optimized grid parameters for the SFM system were lead strip thickness d = 12 µm, grid ratio r = 5 and strip density N = 65 lines/cm. And for the DM system these parameters were d = 5 µm, r = 3 and N = 100 lines/cm. Both optimized grid sets have thinner d and higher N compared to the commercial grids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/60/15/5753 | DOI Listing |
Biomed Phys Eng Express
August 2023
Medical Physics Department, Queen's Centre for Oncology and Haematology, Castle Hill Hospital, Hull University Teaching Hospitals NHS Trust, Castle Road, Hull, HU16 5JQ, United Kingdom.
. Full-field digital mammography (FFDM) systems manufactured by Hologic that utilise either a 2D or linear anti-scatter grid have recently been installed in our clinic. The manufacturer advise that for matched dose, both grids deliver comparable image quality.
View Article and Find Full Text PDFMed Phys
August 2023
Dept. of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
Background: Digital breast tomosynthesis (DBT) has gained popularity as breast imaging modality due to its pseudo-3D reconstruction and improved accuracy compared to digital mammography. However, DBT faces challenges in image quality and quantitative accuracy due to scatter radiation. Recent advancements in deep learning (DL) have shown promise in using fast convolutional neural networks for scatter correction, achieving comparable results to Monte Carlo (MC) simulations.
View Article and Find Full Text PDFMed Phys
November 2021
Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada.
Purpose: To experimentally validate the Fastcat cone beam computed tomography (CBCT) simulator against kV and MV CBCT images acquired with a Varian Truebeam linac.
Methods: kV and MV CBCT images of a Catphan 504 phantom were acquired using a 100 kVp beam with the on-board imager (OBI) and a 6 MV treatment beam with the electronic portal imaging device (EPID), respectively. The kV Fastcat simulation was performed using detailed models of the x-ray source, bowtie filter, a high resolution voxelized virtual Catphan phantom, anti-scatter grid, and the CsI scintillating detector.
Med Phys
November 2018
Computed Tomography, Siemens Healthineers, Forchheim, Germany.
Purpose: Smaller pixel sizes of x-ray photon counting detectors (PCDs) benefit count rate capabilities but increase cross-talk and "double-counting" between neighboring PCD pixels. When an x-ray photon produces multiple (n) counts at neighboring (sub-)pixels and they are added during post-acquisition N × N binning process, the variance of the final PCD output-pixel will be larger than its mean. In the meantime, anti-scatter grids are placed at the pixel boundaries in most of x-ray CT systems and will decrease cross-talk between sub-pixels because the grids mask sub-pixels underneath them, block the primary x-rays, and increase the separation distance between active sub-pixels.
View Article and Find Full Text PDFX-ray fluorescence (XRF) tomography is an emerging imaging technology with the potential for high spatial resolution molecular imaging. One of the key limitations is the background noise due to Compton scattering since it degrades the signal and limits the sensitivity. In this Letter, we present a linear focused anti-scatter grid that reduces the Compton scattering background.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!