Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.

Proc Natl Acad Sci U S A

Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093; and Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08540

Published: July 2015

Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4522805PMC
http://dx.doi.org/10.1073/pnas.1421946112DOI Listing

Publication Analysis

Top Keywords

climate change
12
phenology
8
larval fishes
8
decadal climate
8
phenology species
8
species delayed
8
delayed phenology
8
trend earlier
8
climate
6
earlier
6

Similar Publications

Previous health impact assessments of temperature-related mortality in Europe indicated that the mortality burden attributable to cold is much larger than for heat. Questions remain as to whether climate change can result in a net decrease in temperature-related mortality. In this study, we estimated how climate change could affect future heat-related and cold-related mortality in 854 European urban areas, under several climate, demographic and adaptation scenarios.

View Article and Find Full Text PDF

Assessing the impact of climate change on water-related ecosystem services (ES) in Protected Areas (PAs) is essential for developing soil and water conservation strategies that promote sustainability and restore ES. However, the application of ES research in Protected Area (PA) management remains ambiguous and has notable shortcomings. This study primarily aimed to assess the SDR-InVEST (Sediment Delivery Ratio-Integrated Valuation of Ecosystem Services and Tradeoffs) model for estimating ES, including soil loss, sediment export, and sediment retention, under various climate change scenarios from 1997 to 2100 in the data-scarce region of the Bagh-e-Shadi Forest PA.

View Article and Find Full Text PDF

Land system changes of terrestrial tipping elements on Earth under global climate pledges: 2000-2100.

Sci Data

January 2025

State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China.

Tipping elements on Earth are components that undergo rapid and irreversible changes when climate change reaches a tipping point. They are highly sensitive to climate variations and serve as early warning signs of global change. Human activities, including global climate pledges, significantly influence the climate and the state of tipping elements.

View Article and Find Full Text PDF

Optimal life-cycle adaptation of coastal infrastructure under climate change.

Nat Commun

January 2025

Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.

Climate change-related risk mitigation is typically addressed using cost-benefit analysis that evaluates mitigation strategies against a wide range of simulated scenarios and identifies a static policy to be implemented, without considering future observations. Due to the substantial uncertainties inherent in climate projections, this identified policy will likely be sub-optimal with respect to the actual climate trajectory that evolves in time. In this work, we thus formulate climate risk management as a dynamic decision-making problem based on Markov Decision Processes (MDPs) and Partially Observable MDPs (POMDPs), taking real-time data into account for evaluating the evolving conditions and related model uncertainties, in order to select the best possible life-cycle actions in time, with global optimality guarantees for the formulated optimization problem.

View Article and Find Full Text PDF

Coal tar-related products as a source of polycyclic aromatic compounds (PACs) are particularly concerning due to high PAC concentrations and inadequate source management. Benzo[b]carbazole, a benzocarbazole isomer exclusively found in coal tar-derived products, acts as an ideal marker to distinguish coal tar sources from others, enabling more robust quantification of coal tar contributions to PACs. To evaluate the historical and recent contributions of coal tar-related sources to the levels of PACs in Lake Ontario and associated ecological risk, we analyzed 31 PACs and 3 BCBz isomers in surface sediments and a sediment core.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!