Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983-2012, we find that topsoil (0-50 cm) volumetric water content during the growing season has declined significantly (p < 0.01), with a trend of -0.011 to -0.015 m(3) m(-3) per decade. Observed discharge declines for the three large river basins are consistent with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497304 | PMC |
http://dx.doi.org/10.1038/srep11261 | DOI Listing |
J Environ Manage
March 2025
School of Systems Science, Beijing Normal University, Beijing, 100875, China; Institute for Advanced Study in Physics and School of Physics, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China. Electronic address:
The Tibetan Plateau (TP) and surrounding regions, vital to global energy and water cycles, are profoundly influenced by climate change and anthropogenic activities. Despite widespread attention to vegetation greening across the region since the 1980s, its underlying mechanisms remain poorly understood. This study employs the eigen microstates method to quantify vegetation greening dynamics using long-term remote sensing and reanalysis data.
View Article and Find Full Text PDFPLoS One
March 2025
Alliance of Biodiversity International and CIAT, ILRI, Addis Ababa, Ethiopia.
Depletion of soil organic matter was found to be the primary biophysical factor causing declining per capita food production in sub-Saharan Africa. The magnitude of this problem was exacerbated by moisture-stress and imbalanced fertilizer application that caused Striga weed infestation. To address such confounded issues, two-year field experiments were conducted to evaluate the effect of residual vermicompost and preceding groundnut on soil fertility, sorghum yield, and Striga density.
View Article and Find Full Text PDFFront Plant Sci
February 2025
Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China.
The drought resistance of rice is an indirect observational and complex trait whose phenotype is reflected in the response of directly observational traits to drought stress. To objectively and accurately evaluate the drought resistance of rice, soil moisture gradient quantification was designed as a general water index among different soil types. Through soil water control, water consumption calculation, yield test, trait examination, and statistical analysis, the relationship between quantitative water control treatment and rice yield drought resistance was studied to establish a quantitative and controllable evaluation system of rice drought resistance.
View Article and Find Full Text PDFGlob Chang Biol
March 2025
School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Future variations of global vegetation are of paramount importance for the socio-ecological systems. However, up to now, it is still difficult to develop an approach to project the global vegetation considering the spatial heterogeneities from vegetation, climate factors, and models. Therefore, this study first proposes a novel model framework named GGMAOC (grid-by-grid; multi-algorithms; optimal combination) to construct an optimal model using six algorithms (i.
View Article and Find Full Text PDFFront Plant Sci
February 2025
Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!