Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Technology advances have immensely accelerated large-scale mapping of biological networks, which necessitates the development of accurate and powerful network-based algorithms to make functional inferences. A prevailing approach is to leverage functions of neighboring nodes to predict unknown molecular function. However, existing neighbor-based algorithms have ignored the scale-free property hidden in many biological networks. By assuming that neighbor sharing is constrained by the preferential attachment property, we developed a Preferential Attachment based common Neighbor Distribution (PAND) to calculate the probability of the neighbor-sharing event between any two nodes in scale-free networks, which nearly perfectly matched the observed probability in simulations. By applying PAND to a human protein-protein interaction (PPI) network, we showed that smaller probabilities represented closer functional linkages between proteins. With the PAND-derive linkages, we were able to build new networks where the links are more functionally reliable than those of the human PPI network. We then applied simple annotation schemes to a PAND-derived network to make reliable functional predictions for proteins. We also developed an R package called PANDA (PAND-derived functional Associations) to implement the methods proposed in this study. In conclusion, PAND is a useful distribution to calculate the probability of the neighbor-sharing events in scale-free networks. With PAND, we are able to extract reliable functional linkages from real biological networks and builds new networks that are better bases for further functional inference.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497646 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127968 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!