Although multiple intraoperative cerebral blood flow (CBF) monitoring techniques are currently available, a quantitative method that allows for continuous monitoring and that can be easily integrated into the surgical workflow is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging technique with a high spatiotemporal resolution that has been recently demonstrated as feasible and effective for intraoperative monitoring of CBF during neurosurgical procedures. This study demonstrates the impact of retrospective motion correction on the quantitative analysis of intraoperatively acquired LSCI images. LSCI images were acquired through a surgical microscope during brain tumor resection procedures from 10 patients under baseline conditions and after a cortical stimulation in three of those patients. The patient's electrocardiogram (ECG) was recorded during acquisition for postprocess correction of pulsatile artifacts. Automatic image registration was retrospectively performed to correct for tissue motion artifacts, and the performance of rigid and nonrigid transformations was compared. In baseline cases, the original images had [Formula: see text] noise across 16 regions of interest (ROIs). ECG filtering moderately reduced the noise to [Formula: see text], while image registration resulted in a further noise reduction of [Formula: see text]. Combined ECG filtering and image registration significantly reduced the noise to [Formula: see text] ([Formula: see text]). Using the combined motion correction, accuracy and sensitivity to small changes in CBF were improved in cortical stimulation cases. There was also excellent agreement between rigid and nonrigid registration methods (15/16 ROIs with [Formula: see text] difference). Results from this study demonstrate the importance of motion correction for improved visualization of CBF changes in clinical LSCI images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479045 | PMC |
http://dx.doi.org/10.1117/1.NPh.1.1.015006 | DOI Listing |
Sci Rep
January 2025
School of Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
The use of winglet devices is an efficient technique for enhancing aerodynamic performance. This study investigates the effects of winglet cant angles on both the aerodynamics and aeroacoustics of a commercial wing, comparing them to other significant parameters using a parametric analysis. A Full Factorial Design method is employed to generate a matrix of experiments, facilitating a detailed exploration of flow physics, with lift-to-drag ratio (L/D) and the integral of Acoustic Power Level (APL) as the primary representatives of aerodynamic and acoustic performance, respectively.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Columbia University, New York, NY, USA.
Among expanding discoveries of quantum phases in moiré superlattices, correlated insulators stand out as both the most stable and most commonly observed. Despite the central importance of these states in moiré physics, little is known about their underlying nature. Here, we use pump-probe spectroscopy to show distinct time-domain signatures of correlated insulators at fillings of one (ν = -1) and two (ν = -2) holes per moiré unit cell in the angle-aligned WSe/WS system.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
Background: Alzheimer's disease (AD) is characterized by a decline in cognitive abilities, with cognitive resilience (CR) denoting the capacity of AD patients to withstand such declines. Prior studies have linked the segregation of functional networks with cognitive resilience in AD. The emergence of dynamic functional connectivity (dFC) is a notable advancement in the assessment of brain network dynamics of CR features in AD.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India.
Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, USA.
Persuasion plays a crucial role in human communication. Yet, convincing someone to change their mind is often challenging. Here, we demonstrate that a subtle linguistic device, generic-you (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!