Background: Knowledge of interaction types in biological networks is important for understanding the functional organization of the cell. Currently information-based approaches are widely used for inferring gene regulatory interactions from genomics data, such as gene expression profiles; however, these approaches do not provide evidence about the regulation type (positive or negative sign) of the interaction.

Results: This paper describes a novel algorithm, "Signing of Regulatory Networks" (SIREN), which can infer the regulatory type of interactions in a known gene regulatory network (GRN) given corresponding genome-wide gene expression data. To assess our new approach, we applied it to three different benchmark gene regulatory networks, including Escherichia coli, prostate cancer, and an in silico constructed network. Our new method has approximately 68, 70, and 100 percent accuracy, respectively, for these networks. To showcase the utility of SIREN algorithm, we used it to predict previously unknown regulation types for 454 interactions related to the prostate cancer GRN.

Conclusions: SIREN is an efficient algorithm with low computational complexity; hence, it is applicable to large biological networks. It can serve as a complementary approach for a wide range of network reconstruction methods that do not provide information about the interaction type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495944PMC
http://dx.doi.org/10.1186/s13015-015-0054-4DOI Listing

Publication Analysis

Top Keywords

gene regulatory
16
interaction type
8
regulatory networks
8
biological networks
8
gene expression
8
prostate cancer
8
gene
6
regulatory
6
networks
5
inferring interaction
4

Similar Publications

Transcriptional regulation of miR528-PPO module by miR156 targeted SPLs orchestrates chilling response in banana.

Mol Hortic

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.

Banana is sensitive to cold stress and often suffers from chilling injury with browning peel and failure to normal ripening. We have previously reported that banana chilling injury is accompanied by a reduction of miR528 accumulation, alleviating the degradation of its target gene MaPPO and raising ROS levels that cause peel browning. Here, we further revealed that the miR528-MaPPO cold-responsive module was regulated by miR156-targeted SPL transcription factors, and the miR156c-MaSPL4 module was also responsive to cold stress in banana.

View Article and Find Full Text PDF

The role of hospital pharmacists in supporting the appropriate and safe use of CGT/ATMPs: a scoping review of current insights.

BMC Health Serv Res

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.

Background: The role of hospital pharmacists in managing cell and gene therapy (CGT) and advanced therapy medicinal products (ATMPs) is gradually being recognized but the evidence about impact of their role has not been systematically reported.

Objective: This study was aimed to summarize the professional services provided by hospital pharmacists on managing CGT/ATMPs and the evidence about the effects on patient care, as well as to identify the perceptions about pharmacists assuming a role that supports the appropriate and safe use of CGT/ATMPs.

Methods: Literature from 4 electronic databases (PubMed, ScienceDirect, Web of Science, Scopus) were searched following PRISMA checklist to yield publications on the interventions provided by hospital pharmacists in the management of CGT/ATMPs dated since 1 January 2013 till 30 April 2023.

View Article and Find Full Text PDF

Background: Myelofibrosis (MF) is a clonal haematopoietic disease, with median overall survival for patients with primary MF only 6.5 years. The most frequent gene mutation found in patients is JAK2, causing constitutive activation of the kinase and activation of downstream signalling.

View Article and Find Full Text PDF

Transcriptome-wide dynamics of mA methylation in ISKNV and Siniperca chuatsi cells infected with ISKNV.

BMC Genomics

January 2025

State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Infectious spleen and kidney necrosis virus (ISKNV) is a highly virulent and rapidly transmissible fish virus that poses threats to the aquaculture of a wide variety of freshwater and marine fish. N6-methyladenosine (mA), recognized as a common epigenetic modification of RNA, plays an important regulatory role during viral infection. However, the impact of mA RNA methylation on the pathogenicity of ISKNV remains unexplored.

View Article and Find Full Text PDF

Proper differentiation of bone marrow stromal cells (BMSCs) into adipocytes is crucial for maintaining skeletal homeostasis. However, the underlying regulatory mechanisms remain incompletely understood, posing a challenge for the treatment of age-related osteopenia and osteoporosis. Here, through comprehensive gene expression analysis during BMSC differentiation into adipocytes, we identified the forkhead transcription factor Foxk2 as a key regulator of this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!