Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591378 | PMC |
http://dx.doi.org/10.1152/ajpregu.00056.2015 | DOI Listing |
Clin Obes
December 2024
Division of Gastroenterology-Hepatology, Maastricht University Medical Center, Maastricht, The Netherlands. NUTRIM-School for Nutrition and Translational Research in Metabolism, Maastricht, the Netherlands.
Background: Bariatric surgery is very effective in long-term weight management. The present study was undertaken to investigate the short-term effects of sleeve gastrectomy (SG) and of Roux-en-Y gastric bypass (RYGB) on (a) gastrointestinal (GI) motility, that is gastric emptying and oro-cecal transit time and (b) secretion of regulatory gut peptides and (c) their interrelationship.
Methods: Prospective single-centre study in which we assessed gastric emptying, oro-cecal transit time and gut peptide release in 28 severely obese individuals before and 2, respectively, 12 months after bariatric surgery (either SG or RYGB).
BMC Complement Med Ther
December 2024
Pediatric Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1744, Iran.
Background: L-arginine (Arg) is a semi-essential amino acid that can be used as a key mediator for the release of growth hormone (GH), insulin-like growth factor-1(IGF-1), and other growth factors. In this study, we comprehensively evaluated the effect of Arg intake on bone growth and associated markers.
Methods: The study involved 24 Sprague-Dawley rats (12 males, 12 females) divided into two groups (Age = 24 days).
Int J Pharm
December 2024
College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China. Electronic address:
The effect of digestion on nanocarriers will affect the release and pharmacological effects of bioactive compounds in delivery systems. The digestion of cellulose is limited to gut microbiota, which offers a new research strategy for targeted delivery of bioactive compounds. Herein, positively charged cellulose-like chitosan/polyvinylpyrrolidone nanofiber was prepared to improve the residence time, colon target and gut microbiota regulation activity of quercetin decorated selenium nanoparticles (QUE@SeNPs/CS/PVPNFs).
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, USA.
Precise blood glucose control continues to be a critical challenge in the treatment and management of type 1 diabetes in order to mitigate both acute and chronic complications. This study investigates the development of a supramolecular peptide amphiphile (PA) material functionalized with phenylboronic acid (PBA) for glucose-responsive glucagon delivery. The PA-PBA system self-assembles into nanofibrillar hydrogels in the presence of physiological glucose levels, resulting in stable hydrogels capable of releasing glucagon under hypoglycemic conditions.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
Glucose-dependent insulin delivery systems have been recognized as a promising approach for controlling blood sugar levels in individuals with diabetes mellitus (DM). Recently, titanium dioxide nanoparticles have garnered huge attention in scientific research for their small size and effective drug delivery capabilities. In this study, we developed alizarin (AL)-capped phenylboronic acid (PBA)-functionalized titanium dioxide nanoparticles (TiO) for glucose-sensitive insulin delivery (TiO-PBA-INS-AL) aiming to manage both blood sugar levels and its associated organ pathology in DM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!