Unlabelled: With severe injury or disease, microglia become chronically activated and damage the local brain environment, likely contributing to cognitive decline. We previously discovered that microglia are dependent on colony-stimulating factor 1 receptor (CSF1R) signaling for survival in the healthy adult brain, and we have exploited this dependence to determine whether such activated microglia contribute deleteriously to functional recovery following a neuronal lesion. Here, we induced a hippocampal lesion in mice for 25 d via neuronal expression of diphtheria toxin A-chain, producing both a neuroinflammatory reaction and behavioral alterations. Following the 25 d lesion, we administered PLX3397, a CSF1R inhibitor, for 30 d to eliminate microglia. This post-lesion treatment paradigm improved functional recovery on elevated plus maze and Morris water maze, concomitant with reductions in elevated proinflammatory molecules, as well as normalization of lesion-induced alterations in synaptophysin and PSD-95. Further exploration of the effects of microglia on synapses in a second cohort of mice revealed that dendritic spine densities are increased with long-term microglial elimination, providing evidence that microglia shape the synaptic landscape in the adult mouse brain. Furthermore, in these same animals, we determined that microglia play a protective role during lesioning, whereby neuronal loss was potentiated in the absence of these cells. Collectively, we demonstrate that microglia exert beneficial effects during a diphtheria toxin-induced neuronal lesion, but impede recovery following insult.
Significance Statement: It remains unknown to what degree, and by what mechanisms, chronically activated microglia contribute to cognitive deficits associated with brain insults. We induced a genetic neuronal lesion in mice for 25 d and found activated microglia to increase inflammation, alter synaptic surrogates, and impede behavioral recovery. These lesion-associated deficits were ameliorated with subsequent microglial elimination, underscoring the importance of developing therapeutics aimed at eliminating/modulating chronic microglial activation. Additionally, we found long-term microglial depletion globally increases dendritic spines by ∼35% in the adult brain, indicating that microglia continue to sculpt the synaptic landscape in the postdevelopmental brain under homeostatic conditions. Microglial manipulation can therefore be used to investigate the utility of increasing dendritic spine numbers in postnatal conditions displaying synaptic aberrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495246 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0336-15.2015 | DOI Listing |
Alzheimers Dement
December 2024
All India Institute of Medical Sciences, AIIMS, New Delhi, Delhi, India.
Background: Alzheimer's disease (AD) is a progressive brain disorder which leads to gradual decline in memory, thinking, behaviour and social skills. The current scenario for drug development is based on neuro-inflammation and oxidative stress. Amyloid-β (Aβ) deposition, a major hallmark of the disease activates microglia leading to neuro-inflammation and neuro-degeneration induced by activation of COX-2 via NFkB p50 in glioblastoma cells.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Background: We explored the relationship of neuropsychiatric symptoms (assesses by NPI) and Alzheimer disease pathophysiology from blood AB42/40, GFAB, NFL, and pTau181. We also investigated if age and cognition were related to these neuropsychiatric symptoms.
Method: 222 subjects included 96 dementia, 66 MCI, and 60 normal controls (NC).
Background: Alzheimer's disease is a devastating neurodegenerative disorder with a complex pathogenesis. One main pathological feature utilised in diagnosis is neurodegeneration or neuronal injury, which is reflected in reductions in cerebral glucose metabolism measured by [18F]Fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET). Here we evaluated the involvement of glial reactivity measured with magnetic resonance spectroscopy (MRS) and cerebral blood flow measured with arterial spin labelling (ASL) on [18F]FDG PET as a measure of cerebral glucose metabolism.
View Article and Find Full Text PDFBackground: Microglial activation is an early phenomenon in Alzheimer's disease (AD) that may occur prior to and independently of amyloid-β (Aβ) aggregation. Compelling experimental evidence suggests that the apolipoprotein E ε4 (APOEε4) allele may be a culprit of early microglial activation in AD. However, it is unclear whether the APOEε4 genotype is associated with microglial reactivity in the living human brain.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of São Paulo Medical School, São Paulo, São Paulo, Brazil.
Background: Down syndrome (DS) is associated with mitochondrial dysfunction leading to higher levels of oxidative stress and cell degeneration. This fact, together with the overexpression of AD-related genes in trisomy 21, increases the risk of developing Alzheimer's disease (AD). Thus, it is important to look for interventions that could prevent mitochondrial damage before symptoms occur.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!