Objectives: We have previously identified a 115-gene signature that characterises the metastatic potential of human primary colon cancers. The signature included the canonical Wnt target gene BAMBI, which promoted experimental metastasis in mice. Here, we identified three new direct Wnt target genes from the signature, and studied their functions in epithelial-mesenchymal transition (EMT), cell migration and experimental metastasis.

Design: We examined experimental liver metastases following injection of selected tumour cells into spleens of NOD/SCID mice. Molecular and cellular techniques were used to identify direct transcription target genes of Wnt/β-catenin signals. Microarray analyses and experiments that interfered with cell migration through inhibitors were performed to characterise downstream signalling systems.

Results: Three new genes from the colorectal cancer (CRC) metastasis signature, BOP1, CKS2 and NFIL3, were identified as direct transcription targets of β-catenin/TCF4. Overexpression and knocking down of these genes in CRC cells promoted and inhibited, respectively, experimental metastasis in mice, EMT and cell motility in culture. Cell migration was repressed by interfering with distinct signalling systems through inhibitors of PI3K, JNK, p38 mitogen-activated protein kinase and/or mTOR. Gene expression profiling identified a series of migration-promoting genes, which were induced by BOP1, CKS2 and NFIL3, and could be repressed by inhibitors that are specific to these pathways.

Conclusions: We identified new direct Wnt/β-catenin target genes, BOP1, CKS2 and NFIL3, which induced EMT, cell migration and experimental metastasis of CRC cells. These genes crosstalk with different downstream signalling systems, and activate migration-promoting genes. These pathways and downstream genes may serve as therapeutic targets in the treatment of CRC metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1136/gutjnl-2014-307900DOI Listing

Publication Analysis

Top Keywords

target genes
16
experimental metastasis
16
cell migration
16
emt cell
12
bop1 cks2
12
cks2 nfil3
12
genes
10
wnt/β-catenin target
8
colorectal cancer
8
wnt target
8

Similar Publications

Colorectal cancer (CRC) is the third most deadly cancer diagnosed in both men and women. 5-Fluorouracil (5-FU) treatment frequently causes the CRC cells to become chemoresistance, which has a negative impact on prognosis. Using bioinformatic techniques, this work describes important genes and biological pathways linked to 5-FU resistance in CRC cells.

View Article and Find Full Text PDF

Increasing the robustness of Escherichia coli for aromatic chemicals production through transcription factor engineering.

Adv Biotechnol (Singap)

April 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.

Engineering microbial cell factories has been widely used to produce a variety of chemicals, including natural products, biofuels, and bulk chemicals. However, poor robustness limits microbial production on an industrial scale. Microbial robustness is essential to ensure reliable and sustainable production of targeted chemicals.

View Article and Find Full Text PDF

Targeting oncogene-induced cellular plasticity for tumor therapy.

Adv Biotechnol (Singap)

July 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.

Cellular plasticity, the remarkable adaptability of cancer cells to survive under various stress conditions, is a fundamental hallmark that significantly contributes to treatment resistance, tumor metastasis, and disease recurrence. Oncogenes, the driver genes that promote uncontrolled cell proliferation, have long been recognized as key drivers of cellular transformation and tumorigenesis. Paradoxically, accumulating evidence demonstrates that targeting certain oncogenes to inhibit tumor cell proliferation can unexpectedly induce processes like epithelial-to-mesenchymal transition (EMT), conferring enhanced invasive and metastatic capabilities.

View Article and Find Full Text PDF

A comprehensive insights of cancer immunotherapy resistance.

Med Oncol

January 2025

Department of In Vivo Pharmacology, TCG Lifesciences Pvt. Ltd, BN 7, Sector V, Salt Lake City, Kolkata, West Bengal, 700091, India.

Cancer is a major global health issue that is usually treated with multiple therapies, such as chemotherapy and targeted therapies like immunotherapy. Immunotherapy is a new and alternative approach to treating various types of cancer that are difficult to treat with other methods. Although immune checkpoint inhibitors have shown promise for long-term efficacy, they have limited effectiveness in common cancer types such as breast, prostate, and lung.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) remains a challenging cancer type due to its resistance to standard treatments. Immunogenic cell death (ICD) has the potential to activate anti-tumor immunity, presenting a promising avenue for ccRCC therapies.

Methods: We analyzed data from GSE29609, TCGA-KIRC, and GSE159115 to identify ICD-related prognostic genes in ccRCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!