Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cytochrome (cyt) b6f complex is involved in the transmembrane redox signaling that triggers state transitions in cyanobacteria and chloroplasts. However, the components and molecular mechanisms are still unclear. In an attempt to solve this long-standing problem, we first focused on the unknown role of a single chlorophyll a (Chla) in cyt b6f with a new approach based on Chla structural properties. Various b6f X-ray crystal structures were analyzed to identify their differences, which correlate with differences in Chla molecular volume. We found that the distance of the Rieske [2Fe-2S] cluster to Chla correlates with the distance between a pair of residues at the Qo-site and the distance between a pair of residues at the opposite membrane side. These correlations were accompanied by the rotation of a key peripheral residue and by changes in the hydrophobic thickness of cyt b6f. Parallel analysis of cyt bc1 crystal structures allowed us to conclude that Chla acts as the crucial redox sensor and transmembrane signal transmitter in b6f for changes in the plastoquinone pool redox state. The hydrophobic mismatch induced by the changed hydrophobic thickness of cyt b6f is the driving force for the structural reorganizations of the photosynthetic apparatus during induction and the progression of state transitions in cyanobacteria and chloroplasts. A mechanism for LHCII kinase activation in chloroplasts is also proposed. Our understanding of the dynamic structural changes in bc-complexes during turnover at the Qo-site and state transitions is augmented by the time-sequence ordering of 56 bc crystal structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2015.1056551 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!