Here, we described the production of a cellulase-free alkaline xylanase from Bacillus pumilus MTCC 5015 by submerged fermentation and its application in biobleaching. Various process parameters affecting xylanase production by B. pumilus were optimized by adopting a Plackett-Burman design (PBD) as well as Response surface methodology (RSM). These statistical methods aid in improving the enzyme yield by analysing the individual crucial components of the medium. Maximum production was obtained with 4% yeast extract, 0.08% magnesium sulphate, 30 h of inoculum age, incubation temperature of 33.5 degrees C and pH 9.0. Under optimized conditions, the xylanase activity was 372 IU/ml. Media engineering improved a 5-fold increase in the enzyme production. Scanning electron microscopy (SEM) showed significant changes on the surface of xylanase treated pulps as a result of xylan hydrolysis. Increased roughness of paper carton fibres was apparent in scanning electron micrograph due to opening of the micro fibrils present on the surface by xylanase action. The untreated pulp did not show any such change. These results demonstrated that the B. pumilus MTCC 5015 xylanase was effective in bio-bleaching of paper carton.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!