Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hybrid scaffolds made of xanthan and magnetite nanoparticles (XCA/mag) were prepared by dipping xanthan membranes (XCA) into dispersions of magnetic nanoparticles for different periods of time. The resulting hybrid scaffolds presented magnetization values ranging from 0.25 emu g(-1) to 1.80 emu g(-1) at 70 kOe and corresponding iron contents ranging from 0.25% to 2.3%, respectively. They were applied as matrices for in vitro embryoid body adhesion and neuronal differentiation of embryonic stem cells; for comparison, neat XCA and commercial plastic plates were also used. Adhesion rates were more pronounced when cells were seeded on XCA/mag than on neat XCA or plastic dishes; however, proliferation levels were independent from those of the scaffold type. Embryonic stem cells showed similar differentiation rates on XCA/mag scaffolds with magnetization of 0.25 and 0.60 emu g(-1), but did not survive on scaffolds with 1.80 emu g(-1). Differentiation rates, expressed as the number of neurons obtained on the chosen scaffolds, were the largest on neat XCA, which has a high density of negative charge, and were smallest on the commercial plastic dishes. The local magnetic field inherent of magnetite particles present on the surface of XCA/mag facilitates synapse formation, because synaptophysin expression and electrical transmission were increased when compared to the other scaffolds used. We conclude that XCA/mag and XCA hydrogels are scaffolds with distinguishable performance for adhesion and differentiation of ESCs into neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-6041/10/4/045002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!