The first structure of an aromatic bis(trifluoroborate) dipotassium salt, elucidated by the combination of crystallography, DFT calculations, topological and non-covalent interaction analysis, discloses a 3D network undergoing spontaneous self-assembly thanks to the massive participation of weak intra- and intermolecular interactions for which fluorine atoms proved to play a leading role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5dt02020d | DOI Listing |
Org Biomol Chem
August 2016
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
Combination of organotrifluoroborates and visible-light-driven photoredox catalysis, both of which have attracted the attention of synthetic chemists, marks a new phase in the field of organic radical chemistry. We have developed photoredox-catalyzed radical reactions with organotrifluoroborates, which turn out to serve not only as a source of organic radicals but also as radical acceptors. The first part of this Perspective deals with the generation of organic radicals from organotrifluoroborates, and the latter part describes addition of the CF3 radical to alkenyltrifluoroborates.
View Article and Find Full Text PDFDalton Trans
December 2015
Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125, Bari, Italy.
The first structure of an aromatic bis(trifluoroborate) dipotassium salt, elucidated by the combination of crystallography, DFT calculations, topological and non-covalent interaction analysis, discloses a 3D network undergoing spontaneous self-assembly thanks to the massive participation of weak intra- and intermolecular interactions for which fluorine atoms proved to play a leading role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!