Escherichia coli K4 produces a capsule with a chemical structure that resembles chondroitin, a molecule with established chondro protective properties. The endogenous genes pgm and galU are involved in the biosynthesis of UDP-glucose which is a critical intermediate in carbohydrate metabolism and biochemical precursor of UDP-glucuronic acid. Together with UDP-N-acetylgalactosamine, UDP-glucuronic acid is used as sugar donor for capsule biosynthesis. The aim of the study was to evaluate how a change in the pathways leading to UDP-glucuronic acid biosynthesis affected capsular polysaccharide production. One additional copy of pgm and galU was introduced in E. coli K4 and in the previously described recombinant strain EcK4r3. A microbioreactor was used to analyse strain performance with parallel batch experiments, demonstrating increased polysaccharide concentrations and providing data that are comparable to those obtained in larger fermenters. Further experiments on a glutamine enriched medium showed an additional 45% increase of capsule production, maybe indicating the need to balance both branches leading to polymer biosynthesis in order to maximize yields. In the effort towards the establishment of a feasible bio-chondroitin production process this study provides information on how the availability of sugar precursors impacts polysaccharide biosynthesis in E. coli K4, a complex unexplored aspect of a multifaceted process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.201400602 | DOI Listing |
Biochemistry
January 2025
Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States.
The exterior surface of the human pathogen is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different sugars that can be modified with various molecular decorations. In the HS:2 serotype from strain NCTC 11168, the repeating unit within the CPS is composed of d-ribose, -acetyl-d-galactosamine, and a d-glucuronic acid that is further amidated with either serinol or ethanolamine. The d-glucuronic acid moiety is also decorated with d-glycero-l-gluco-heptose.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
is the leading cause of food poisoning in Europe and North America. The exterior surface of this bacterium is encased by a capsular polysaccharide that is attached to a diacyl glycerol phosphate anchor via a poly-Kdo (3-deoxy-d--oct-2-ulosinic acid) linker. In the HS:2 serotype of NCTC 11168, the repeating trisaccharide consists of d-ribose, -acetyl-d-glucosamine, and d-glucuronate.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
Background: Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW.
View Article and Find Full Text PDFArch Toxicol
January 2025
Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
Human UDP-glucuronosyltransferases (UGTs) are pivotal phase II metabolic enzymes facilitating the transfer of glucuronic acid from UDP-glucuronic acid (UDPGA) to various substrates. UGTs are classic type I transmembrane glycoproteins, mainly localized in the endoplasmic reticulum (ER) membrane. This review comprehensively explores UGTs, encompassing gene expression, functional characteristics, substrate specificity, and metabolic mechanisms.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
Glycosylation is an effective means to alter the structure and properties of plant compounds, influencing the pharmacological activity of natural products (NPs) to obtain highly active NPs. In nature, glucosides are the most widely distributed, while other glycosides such as xylosides are less common and present in lower quantities. This is due to the scarcity of xylosyltransferases with substrate promiscuity in nature, and the modification of their catalytic function is also quite challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!