Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation.

Sci Signal

Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA. Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA. Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.

Published: July 2015

Nitric oxide (NO) is a signaling intermediate during glutamatergic neurotransmission in the central nervous system (CNS). NO signaling is in part accomplished through cysteine S-nitrosylation, a posttranslational modification by which NO regulates protein function and signaling. In our investigation of the protein targets and functional impact of S-nitrosylation in the CNS under physiological conditions, we identified 269 S-nitrosocysteine residues in 136 proteins in the wild-type mouse brain. The number of sites was significantly reduced in the brains of mice lacking endothelial nitric oxide synthase (eNOS(-/-)) or neuronal nitric oxide synthase (nNOS(-/-)). In particular, nNOS(-/-) animals showed decreased S-nitrosylation of proteins that participate in the glutamate/glutamine cycle, a metabolic process by which synaptic glutamate is recycled or oxidized to provide energy. (15)N-glutamine-based metabolomic profiling and enzymatic activity assays indicated that brain extracts from nNOS(-/-) mice converted less glutamate to glutamine and oxidized more glutamate than those from mice of the other genotypes. GLT1 [also known as EAAT2 (excitatory amino acid transporter 2)], a glutamate transporter in astrocytes, was S-nitrosylated at Cys(373) and Cys(561) in wild-type and eNOS(-/-) mice, but not in nNOS(-/-) mice. A form of rat GLT1 that could not be S-nitrosylated at the equivalent sites had increased glutamate uptake compared to wild-type GLT1 in cells exposed to an S-nitrosylating agent. Thus, NO modulates glutamatergic neurotransmission through the selective, nNOS-dependent S-nitrosylation of proteins that govern glutamate transport and metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746709PMC
http://dx.doi.org/10.1126/scisignal.aaa4312DOI Listing

Publication Analysis

Top Keywords

nitric oxide
16
glutamatergic neurotransmission
8
oxide synthase
8
s-nitrosylation proteins
8
nnos-/- mice
8
glutamate
7
s-nitrosylation
5
mice
5
regulation brain
4
brain glutamate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!