Cloning and identification of a YY-1 homolog as a potential transcription factor from Pinctada fucata.

Gene

Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing 100084, China. Electronic address:

Published: November 2015

Biomineralization is an important and ubiquitous process in organisms. The shell formation of mollusks is a typical biomineral physical activity and is used as a canonical model in biomineralization research. Most recent studies focused on the identification of matrix proteins involved in shell formation; however, little is known about their transcriptional regulation mechanism, especially the transcription factors involved in shell formation. In this study, we identified a homolog of the YY-1 transcriptional factor from Pinctada fucata, named Pf-YY-1, and characterized its expression pattern and biological functions. Pf-YY-1 has a typical zinc finger motif highly similar to those in humans, mice, and other higher organisms, which indicated its DNA-binding capability and its function as a transcription factor. Pf-YY-1 is ubiquitously expressed in many tissues, but at a higher level in the mantle, which suggested a role in biomineralization. The expression pattern of Pf-YY-1 during pearl sac development was quite similar to, and was synchronized with, those of Prisilkin-39, ACCBP, and other genes involved in biomineralization, which also suggested its function in biomineralization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2015.07.003DOI Listing

Publication Analysis

Top Keywords

shell formation
12
transcription factor
8
factor pinctada
8
pinctada fucata
8
involved shell
8
expression pattern
8
biomineralization
5
cloning identification
4
identification yy-1
4
yy-1 homolog
4

Similar Publications

Polar Vortices in Relaxor Ferroelectric Ceramics for High-Efficiency Capacitive Energy Storage.

ACS Nano

January 2025

Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.

Polar vortices are predominantly observed within the confined ferroelectric films and the ferroelectric/paraelectric superlattices. This raises the intriguing question of whether polar vortices can form within relaxor ferroelectric ceramics and subsequently contribute to their energy storage performances. Here, we incorporate 10 mol % CaSnO into the 0.

View Article and Find Full Text PDF

Tc toxins are pore-forming virulence factors of many pathogenic bacteria. Following pH-induced conformational changes, they perforate the target membrane like a syringe to translocate toxic enzymes into a cell. Although this complex transformation has been structurally well studied, the reaction pathway and the resulting temporal evolution have remained elusive.

View Article and Find Full Text PDF

Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.

View Article and Find Full Text PDF

Long-Term Natural Hydroxyapatite and Synthetic Collagen Hydroxyapatite Enhance Bone Regeneration and Implant Fixation Similar to Allograft in a Sheep Model of Implant Integration.

Calcif Tissue Int

January 2025

Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.

There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.

View Article and Find Full Text PDF

Objectives:  Calcium carbonate (CaCO), a major inorganic component in bones and teeth, offers potential protection against demineralization. This study investigates the effect of CaCO from shells on the expression of fibroblast growth factor 2 (FGF2), transforming growth factor-β1 (TGF-β1), and collagen type 1 in the rat dental pulp.

Materials And Methods:  The first maxillary molars of were perforated and subsequently pulp capped with CaCO extracted from shells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!