Spinal cord injury affects I-wave facilitation in human motor cortex.

Brain Res Bull

Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University and Center for Cognitive Neuroscience, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria.

Published: July 2015

Transcranial magnetic stimulation (TMS) is a useful non-invasive approach for studying cortical physiology. To further clarify the mechanisms of cortical reorganization after spinal cord injury (SCI), we used a non-invasive paired TMS protocol for the investigation of the corticospinal I-waves, the so-called I-wave facilitation, in eight patients with cervical SCI. We found that the pattern of I-wave facilitation significantly differs between SCI patients with normal and abnormal central motor conduction (CMCT), and healthy controls. The group with normal CMCT showed increased I-wave facilitation, while the group with abnormal CMCT showed lower I-wave facilitation compared to a control group. The facilitatory I-wave interaction occurs at the level of the motor cortex, and the mechanisms responsible for the production of I-waves are under control of GABA-related inhibition. Therefore, the findings of our small sample preliminary study provide further physiological evidence of increased motor cortical excitability in patients with preserved corticospinal projections. This is possibly due to decreased GABAergic intracortical inhibition. The excitability of networks producing short-interval intracortical facilitation could increase after SCI as a mechanism to enhance activation of residual corticospinal tract pathways and thus compensate for the impaired ability of the motor cortex to generate appropriate voluntary movements. Finally, the I-wave facilitation technique could be used in clinical neurorehabilitation as an additional method of assessing and monitoring function in SCI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2015.06.006DOI Listing

Publication Analysis

Top Keywords

i-wave facilitation
24
motor cortex
12
spinal cord
8
cord injury
8
i-wave
7
facilitation
7
motor
5
sci
5
injury i-wave
4
facilitation human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!