Structural Changes in Ceramide Bilayers Rationalize Increased Permeation through Stratum Corneum Models with Shorter Acyl Tails.

J Phys Chem B

†Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 771 46 Olomouc, Czech Republic.

Published: July 2015

Ceramides are indispensable constituents of the stratum corneum (SC), the uppermost impermeable layer of human skin. Ceramides with shorter (four- to eight-carbon acyl chains) fatty acid chains increase skin and model membrane permeability, while further shortening of the chain leads to increased resistance to penetration almost as good as that of ceramides from healthy skin (24 carbons long on average). Here we address the extent to which the atomistic CHARMM36 and coarse-grain MARTINI molecular dynamics (MD) simulations reflect the skin permeability data. As a result, we observed the same bell-shaped permeability trend for water that was observed in the skin and multilayer membrane experiments for model compounds. We showed that the enhanced permeability of the short ceramides is mainly caused by the disturbance of their headgroup conformation because of their inability to accommodate the shorter lipid acyl chain into a typical hairpin conformation, which further led to their destabilization and phase separation. As MD simulations described well delicate structural features of SC membranes, they seem to be suitable for further studies of the SC superstructure, including the development of skin penetration enhancers for transdermal drug delivery and skin toxicity risk assessment studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.5b05522DOI Listing

Publication Analysis

Top Keywords

stratum corneum
8
skin
7
structural changes
4
changes ceramide
4
ceramide bilayers
4
bilayers rationalize
4
rationalize increased
4
increased permeation
4
permeation stratum
4
corneum models
4

Similar Publications

Self-Delivering RNAi Compounds for Reduction of Hyperpigmentation.

Clin Cosmet Investig Dermatol

December 2024

Phio Pharmaceuticals, Marlborough, MA, USA.

Purpose: Abnormal melanin synthesis causes hyperpigmentation disorders like melasma and lentigines, impacting psychological well-being. RNA interference (RNAi) uses small RNA molecules to inhibit gene expression by targeting specific mRNA, silencing genes involved in undesirable cellular functions. This study assessed INTASYL compounds, self-delivering RNAi molecules, designed to target and reduce tyrosinase gene expression to decrease pigmentation.

View Article and Find Full Text PDF

Background: Identification of predictive biomarkers is crucial for formulating preventive interventions and halting the progression of atopic march. Although controversial, the use of accessible markers to predict or detect early onset of atopic diseases is highly desirable. Therefore, this study aimed to investigate whether corneal squamous cell carcinoma antigen-1 (SCCA1) collected from infants can predict the development of atopic dermatitis and food allergy.

View Article and Find Full Text PDF

Analysis of time-of-flight secondary ion mass spectrometry data of human skin treated with diclofenac using sparse autoencoder.

Anal Bioanal Chem

December 2024

Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino, Tokyo, 180-8633, Japan.

Methods that facilitate molecular identification and imaging are required to evaluate drug penetration into tissues. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), which has high spatial resolution and allows 3D distribution imaging of organic materials, is suitable for this purpose. However, the complexity of ToF-SIMS data, which includes nonlinear factors, makes interpretation challenging.

View Article and Find Full Text PDF

Transdermal delivery of natural products against atopic dermatitis.

Chin J Nat Med

December 2024

Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China. Electronic address:

Atopic dermatitis (AD) is a chronic inflammatory skin condition. Natural products have gained traction in AD treatment due to their accessibility, low toxicity, and favorable pharmacological properties. However, their application is primarily constrained by poor solubility, instability, and limited permeability.

View Article and Find Full Text PDF

Purpose: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease that severely impairs patient's life quality and represents significant therapeutic challenge due to its pathophysiology arising from skin barrier dysfunction. Topical corticosteroids, the mainstay treatment for mild to moderate AD, are usually formulated into conventional dosage forms that are impeded by low drug permeation, resulting in high doses with consequent adverse effects, and also lack properties that would strengthen the skin barrier. Herein, we aimed to develop biomimetic lamellar lyotropic liquid crystals (LLCs), offering a novel alternative to conventional AD treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!