Novel agents need to be developed to overcome the limitations of the current melanoma therapeutics. Atractylenolide I (AT-I) is a sesquiterpene compound isolated from atractylodis macrocephalae rhizoma. Previous findings demonstrated that AT-I exhibited cytotoxic action in melanoma cells. However, the molecular mechanisms of AT‑1's anti-melanoma properties remain to be elucidated. In the present study, the cell cycle-arrest and apoptosis-promoting effects as well as the ERK/GSK3β signaling-related mechanism of action of AT-I were examined. B16 melanoma cells were treated with various concentrations of AT-1 (50, 75 and 100 µM) for 48 or 72 h. Cell cycle and apoptosis were analyzed by flow cytometry. Protein expression levels were detected by western blot analysis. AT-I treatment induced G1 phase arrest, which was accompanied by increased p21 and decreased CDK2 protein expression levels. Apoptosis was observed after AT-I treatment for 72 h, which was accompanied by activated caspase‑3 and ‑8. AT-I treatment significantly decreased phospho-ERK, phospho-GSK3β, c-Jun and increased p53 protein expression levels. Lithium chloride (LiCl, 5 mM), a GSK3β inhibitor, treatment alone did not increase the apoptosis of B16 cells, while pretreatment with LiCl markedly reversed AT-I-induced apoptosis. Additionally, AT-I-induced G1 phase arrest was partially reversed by LiCl pretreatment. In conclusion, ERK/GSK3β signaling was involved in the apoptotic and G1 phase arrest effects of AT-I in melanoma cells.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2015.4111DOI Listing

Publication Analysis

Top Keywords

melanoma cells
16
protein expression
12
expression levels
12
at-i treatment
12
g1 phase arrest
12
erk/gsk3β signaling
8
signaling involved
8
cell cycle
8
at-i
7
apoptosis
5

Similar Publications

Potent prophylactic cancer vaccines harnessing surface antigens shared by tumour cells and induced pluripotent stem cells.

Nat Biomed Eng

December 2024

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China.

The development of prophylactic cancer vaccines typically involves the selection of combinations of tumour-associated antigens, tumour-specific antigens and neoantigens. Here we show that membranes from induced pluripotent stem cells can serve as a tumour-antigen pool, and that a nanoparticle vaccine consisting of self-assembled commercial adjuvants wrapped by such membranes robustly stimulated innate immunity, evaded antigen-specific tolerance and activated B-cell and T-cell responses, which were mediated by epitopes from the abundant number of antigens shared between the membranes of tumour cells and pluripotent stem cells. In mice, the vaccine elicited systemic antitumour memory T-cell and B-cell responses as well as tumour-specific immune responses after a tumour challenge, and inhibited the progression of melanoma, colon cancer, breast cancer and post-operative lung metastases.

View Article and Find Full Text PDF

Bee pollen peptides as potent tyrosinase inhibitors with anti-melanogenesis effects in murine b16f10 melanoma cells and zebrafish embryos.

Sci Rep

December 2024

Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.

One important functional food ingredient today, valued for its health properties and ability to prevent disease, is bee pollen, which comprises a combination of nectar, pollen from plants, and the secretions of bees. In this research, the tyrosinase (TYR) inhibiting abilities of the peptides derived from bee pollen protein hydrolysates are investigated. Various proteases were utilized to generate these peptides, followed by testing at different concentrations.

View Article and Find Full Text PDF

Xeroderma pigmentosum group C (XPC) is a versatile protein crucial for sensing DNA damage in the global genome nucleotide excision repair (GG-NER) pathway. This pathway is vital for mammalian cells, acting as their essential approach for repairing DNA lesions stemming from interactions with environmental factors, such as exposure to ultraviolet (UV) radiation from the sun. Loss-of-function mutations in the XPC gene confer a photosensitive phenotype in XP-C patients, resulting in the accumulation of unrepaired UV-induced DNA damage.

View Article and Find Full Text PDF

Canine oral melanoma (COM) is a promising target for immunomodulatory therapies aimed at enhancing the immune system's antitumor response. Given that adipose-derived mesenchymal stem cells (Ad-MSCs) possess immunomodulatory properties through cytokine release, we hypothesized that co-culturing Ad-MSCs and canine peripheral blood mononuclear cells (PBMCs) could stimulate interleukin (IL) production against melanoma cell lines (MCCLs) and help identify therapeutic targets. This study evaluated IL-2, IL-8, and IL-12 expressions in co-culture with MCCL, Ad-MSCs, and PBMCs and assessed the relationship between gene expression, cell viability, and migration.

View Article and Find Full Text PDF

APAVAC Immunotherapy for the Adjuvant Treatment of a Canine Mucosal Melanoma.

Vet Sci

December 2024

Ospedale Veterinario I Portoni Rossi, Anicura Italy Holding, via Roma 51, 40069 Zola Predosa, Italy.

An 11-year-old spayed female Beagle presented with tenesmus and was identified with a rectal wall mass. Diagnostic imaging (abdominal ultrasound and computed tomography) localised the mass in the right rectal wall and documented no evidence of metastatic disease. Subsequently, the dog underwent surgery for tumour excision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!