Soil mercury (Hg) emissions are an important component of the global Hg cycle. Sunlight induced photoreduction of oxidized Hg to gaseous elemental Hg is an important mechanism controlling emissions from the soil surface, however we currently understand little about how subsurface Hg stores participate in gaseous Hg cycling. Our study objective was to investigate the ability of Hg at deeper soil depths to participate in emissions. Soil fluxes were measured under controlled laboratory conditions utilizing an enriched stable Hg isotope tracer buried at 0, 1, 2, and 5 cm below the surface. Under dry and low-light conditions, the Hg isotope tracer buried at the different depths participated similarly in surface emissions (median flux: 7.5 ng m(-2) h(-1)). When the soils were wetted, Hg isotope tracer emissions increased significantly (up to 285 ng m(-2) h(-1)), with the highest fluxes (76% of emissions) originating from the surface 1 cm amended soils and decreasing with depth. Mercury associated with sandy soil up to 6 cm below the surface can be emitted, clearly demonstrating that volatilization can occur via processes unrelated to sunlight. These results have important implications for considering how long older, legacy soil Hg contamination continues to cycle between soil and atmosphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.5b01747 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!