Excessive avoidance behavior, in which an instrumental action prevents an upcoming aversive event, is a defining feature of anxiety disorders. Left unchecked, both fear and avoidance of potentially threatening stimuli may generalize to perceptually related stimuli and situations. The behavioral consequences of generalization mean that aversive learning experiences with specific threats may lead to the inference that classes of related stimuli are threatening, potentially dangerous, and need to be avoided, despite differences in physical form. Little is known however about avoidance generalization in humans and the learning pathways by which it may be transmitted. In the present study, we compared two pathways to avoidance-instructions and social observation-on subsequent generalization of avoidance behavior, fear expectancy and physiological arousal. Participants first learned that one cue was a danger cue (conditioned stimulus, CS+) and another was a safety cue (CS-). Groups were then either instructed that a simple avoidance response in the presence of the CS+ cancelled upcoming shock (instructed-learning group) or observed a short movie showing a demonstrator performing the avoidance response to prevent shock (observational-learning group). During generalization testing, danger and safety cues were presented along with generalization stimuli that parametrically varied in perceptual similarity to the CS+. Reinstatement of fear and avoidance was also tested. Findings demonstrate, for the first time, generalization of socially transmitted and instructed avoidance: both groups showed comparable generalization gradients in fear expectancy, avoidance behavior and arousal. Return of fear was evident, suggesting that generalized avoidance remains persistent following extinction testing. The utility of the present paradigm for research on avoidance generalization is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471372 | PMC |
http://dx.doi.org/10.3389/fnbeh.2015.00159 | DOI Listing |
The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Biostatistics, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China.
Motivation: Fine-mapping aims to prioritize causal variants underlying complex traits by accounting for the linkage disequilibrium of GWAS risk locus. The expanding resources of functional annotations serve as auxiliary evidence to improve the power of fine-mapping. However, existing fine-mapping methods tend to generate many false positive results when integrating a large number of annotations.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Life Technologies/Biotechnology, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
The anti-Stokes emission of photon upconversion nanoparticles (UCNPs) facilitates their use as labels for ultrasensitive detection in biological samples as infrared excitation does not induce autofluorescence at visible wavelengths. The detection of extremely low-abundance analytes, however, remains challenging as it is impossible to completely avoid nonspecific binding of label conjugates. To overcome this limitation, we developed a novel hybridization complex transfer technique using UCNP labels to detect short nucleic acids directly without target amplification.
View Article and Find Full Text PDFMol Ther
January 2025
Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School; 30625 Hannover, NI, Germany. Electronic address:
Antibody-mediated rejection (AMR) remains a major complication after solid organ transplantation (SOT). Current treatment options are inefficient and result in drastic impairment of the general immunity. To selectively eliminate responsible alloreactive B cells characterized by anti-donor-HLA B-cell receptors (BCRs), we generated T cells overcoming rejection by antibodies (CORA-Ts) engineered with a novel chimeric receptor comprising a truncated donor-HLA molecule as antigen recognition domain.
View Article and Find Full Text PDFAttach Hum Dev
January 2025
Department of Psychology, University of Regensburg, Regensburg, Germany.
Our memories reflect professional meetings and our private relationship with Mary Main for over more than 50 years, working, travelling jointly, and celebrating together. Klaus met Mary Main at Mary Ainsworth's lab in 1973 in Baltimore. Mary Main's and our own longitudinal studies both started at the same time in which attachment research became a focus of several research groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!