Invasive mycotic infections have become more common during recent decades, posing an increasing threat to public health. However, despite the growing needs, treatments for invasive fungal infections remain unsatisfactory and are limited to a small number of antifungals. The aim of this study was to identify novel fungal cell wall inhibitors from a library of small chemical compounds using a conditional protein kinase C (PKC)-expressing strain of Aspergillus nidulans sensitive to cell wall-active agents. Eight "hit" compounds affecting cell wall integrity were identified from a screen of 35,000 small chemical compounds. Five shared a common basic molecular structure of 4-chloro-6-arylamino-7-nitro-benzofurazane (CANBEF). The most potent compound, CANBEF-24, was characterized further and was shown to inhibit the growth of pathogenic Aspergillus, Candida, Fusarium, and Rhizopus isolates at micromolar concentrations but not to affect the growth of mammalian cell lines. CANBEF-24 demonstrated strong synergy in combination with caspofungin, an antifungal that inhibits cell wall biosynthesis. Genetic and biochemical analyses with Aspergillus nidulans and Saccharomyces cerevisiae indicated that CANBEFs selectively inhibit fungal rRNA maturation and protein synthesis, suggesting that their effect on the cell wall is indirect. CANBEFs were nontoxic in insect (Galleria mellonella, Drosophila melanogaster) and mouse models of fungal infection. Preliminary evidence showing no therapeutic benefit in these models suggests that further cycles of optimization are needed for the development of this novel class of compounds for systemic use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538511 | PMC |
http://dx.doi.org/10.1128/AAC.00850-15 | DOI Listing |
Sci Rep
January 2025
School of Agriculture and Food Systems, Davis College of Agriculture and Natural Resources, West Virginia University, Morgantown, WV, USA.
The management of micronutrients, such as boron (B) and zinc (Zn), is critical for plant growth and crop yields. One method of rapid intervention crop management to mitigate nutritional deficiency is the foliar supply of B and Zn. Our study investigates the effect of foliar-supplied B and Zn availability on the global transcriptional modulation in soybean (Glycine max).
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Future long duration space missions will expose astronauts to higher doses of galactic cosmic radiation (GCR) than those experienced on the international space station. Recent studies have demonstrated astronauts may be at risk for cardiovascular complications due to increased radiation exposure and fluid shift from microgravity. However, there is a lack of direct evidence on how the cardiovascular system is affected by GCR and microgravity since no astronauts have been exposed to exploratory mission relevant GCR doses.
View Article and Find Full Text PDFJ Plant Physiol
January 2025
Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China. Electronic address:
Urban ornamental shrubs have significant potential for restoring cadmium (Cd)-contaminated soil. The Cd enrichment characteristics and tolerance mechanisms of Buxus sinica and Ligustrum × vicaryi were investigated through a simulated pot pollution experiment. Specifically, the Cd content and accumulation in different plant tissues, the subcellular distribution and chemical forms of Cd in the roots, and the effects of Cd on the ultrastructure of root cells under various Cd concentrations (0, 25, 50, 100, and 200 mg kg⁻) were analyzed.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Biological Sciences, University of Alberta, BS CW405 Edmonton, AB, T6G 2R3, Canada.
Fungi are well known for their ability to both produce and catabolize complex carbohydrates to acquire carbon, often in the most extreme of environments. Glucuronoxylomannan (GXM)-based gel matrices are widely produced by fungi in nature and though they are of key interest in medicine and pharmaceuticals, their biodegradation is poorly understood. Though some organisms, including other fungi, are adapted to life in and on GXM-like matrices in nature, they are almost entirely unstudied, and it is unknown if they are involved in matrix degradation.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Moscow Region, 142290, Russia.
VKM Ac-1390 (family Microbacteriaceae, class Actinomycetes) contains three rhamnose-containing glycopolymers in the cell wall, the structures of which were established by chemical and NMR spectroscopy methods. The first polymer, a rhamnomannan, consists of repeating tetrasaccharide units with xylopyranose side residues, →2)-α-[β-D-Xyl-(1→3)]-D-Rha-(1→3)-α-D-Man-(1→2)-α-D-Rha-(1→3)-α-D-Man-(1→. The second polymer found in minor amounts, is a rhamnan, →2)-α-D-Rha-(1→3)-α-D-Rha-(1→.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!