ARTD1 Suppresses Interleukin 6 Expression by Repressing MLL1-Dependent Histone H3 Trimethylation.

Mol Cell Biol

Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland

Published: September 2015

ADP-ribosyltransferase diphtheria-toxin like 1/poly(ADP-ribose) polymerase 1 (ARTD1/PARP1) is a chromatin-associated protein in the nucleus and plays an important role in different cellular processes such as regulation of gene transcription. ARTD1 has been shown to coregulate the inflammatory response by modulating the activity of the transcription factor nuclear factor κB (NF-κB), the principal regulator of interleukin 6 (IL-6), an important inflammatory cytokine implicated in a variety of diseases such as cancer. However, to what extent and how ARTD1 regulates IL-6 transcription has not been clear. Here, we show that ARTD1 suppresses lipopolysaccharide (LPS)-induced IL-6 expression in macrophages, without affecting the recruitment of the NF-κB subunit RelA to the IL-6 promoter and independent of its enzymatic activity. Interestingly, knockdown of ARTD1 did not alter H3 occupancy but increased LPS-induced trimethylation of histone 3 at lysine 4 (H3K4me3), a hallmark of transcriptionally active genes. We found that ARTD1 mediates its effect through the methyltransferase MLL1, by catalyzing H3K4me3 at the IL-6 promoter and forming a complex with NF-κB. These results demonstrate that ARTD1 modulates IL-6 expression by regulating the function of an NF-κB enhanceosome complex, which involves MLL1 and does not require ADP-ribosylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539373PMC
http://dx.doi.org/10.1128/MCB.00196-15DOI Listing

Publication Analysis

Top Keywords

artd1 suppresses
8
il-6 expression
8
il-6 promoter
8
artd1
7
il-6
6
suppresses interleukin
4
interleukin expression
4
expression repressing
4
repressing mll1-dependent
4
mll1-dependent histone
4

Similar Publications

PARP1 (ARTD1) and Tankyrases (TNKS1/TNKS2; PARP5a/5b) are poly-ADP-ribose polymerases (PARPs) with catalytic and non-catalytic functions that regulate both the genome and proteome during zygotic genome activation (ZGA), totipotent, and pluripotent embryonic stages. Here, we show that primed, conventional human pluripotent stem cells (hPSC) cultured continuously under non-specific TNKS1/TNKS2/PARP1-inhibited chemical naive reversion conditions underwent epigenetic reprogramming to clonal blastomere-like stem cells. TIRN stem cells concurrently expressed hundreds of gene targets of the ZGA-priming pioneer factor DUX4, as well as a panoply of four-cell (4C)-specific (e.

View Article and Find Full Text PDF

ARTD1 Suppresses Interleukin 6 Expression by Repressing MLL1-Dependent Histone H3 Trimethylation.

Mol Cell Biol

September 2015

Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland

ADP-ribosyltransferase diphtheria-toxin like 1/poly(ADP-ribose) polymerase 1 (ARTD1/PARP1) is a chromatin-associated protein in the nucleus and plays an important role in different cellular processes such as regulation of gene transcription. ARTD1 has been shown to coregulate the inflammatory response by modulating the activity of the transcription factor nuclear factor κB (NF-κB), the principal regulator of interleukin 6 (IL-6), an important inflammatory cytokine implicated in a variety of diseases such as cancer. However, to what extent and how ARTD1 regulates IL-6 transcription has not been clear.

View Article and Find Full Text PDF

ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion.

Cell Rep

September 2014

Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213, USA. Electronic address:

ARTD1 (PARP1) is a key enzyme involved in DNA repair through the synthesis of poly(ADP-ribose) (PAR) in response to strand breaks, and it plays an important role in cell death following excessive DNA damage. ARTD1-induced cell death is associated with NAD(+) depletion and ATP loss; however, the molecular mechanism of ARTD1-mediated energy collapse remains elusive. Using real-time metabolic measurements, we compared the effects of ARTD1 activation and direct NAD(+) depletion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!