The lignocellulose degradation capacity of filamentous fungi has been widely studied because of their cellulase hypersecretion. The p24 proteins in eukaryotes serve important functions in this secretory pathway. However, little is known about the functions of the p24 proteins in filamentous fungi. In this study, four p24 proteins were identified in Penicillium oxalicum. Six p24 double-deletion strains were constructed, and further studies were carried out with the ΔerpΔpδ strain. The experimental results suggested that Erp and Pδ form a p24 heterodimer in vivo. This p24 heterodimer participates in important morphogenetic events, including sporulation, hyphal growth, and lateral branching. The results suggested that the p24 heterodimer mediates protein transport, particularly that of cellobiohydrolase. Analysis of the intracellular proteome revealed that the ΔerpΔpδ double mutant is under secretion stress due to attempts to remove proteins that are jammed in the endomembrane system. These results suggest that the p24 heterodimer participates in morphogenesis and protein transport. Compared with P. oxalicum Δerp, a greater number of cellular physiological pathways were impaired in ΔerpΔpδ. This finding may provide new insights into the secretory pathways of filamentous fungi.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493713 | PMC |
http://dx.doi.org/10.1038/srep11875 | DOI Listing |
Front Mol Biosci
September 2019
Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France.
MHC class II receptors carry important function in adaptive immunity and their malfunctioning is associated with diabetes type I, chronic inflammatory diseases and other autoimmune diseases. The protein assembles from the DQ alpha-1 and DQ beta-1 subunits where the transmembrane domains of these type I membrane proteins have been shown to be involved in homo- and heterodimer formation. Furthermore, the DQ alpha 1 chain carries a sequence motif that has been first identified in the context of p24, a protein involved in the formation of COPI vesicles of the intracellular transport machinery, to specifically interact with sphingomyelin-C18 (SM-C18).
View Article and Find Full Text PDFRetrovirology
September 2015
Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
Background: The structure of HIV-1 envelope glycoprotein (Env) is flexible and heterogeneous on whole virions. Although functional Env complexes are thought to require trimerization of cleaved gp41/gp120 heterodimers, variable processing can result in the potential incorporation of non-functional uncleaved proteins (gp160), non-trimeric arrangements of gp41/gp120 heterodimers, and gp120 depleted gp41 stumps. The potential distribution of functional and non-functional Env forms across replication-competent viral populations may have important implications for neutralizing and non-neutralizing antibody functions.
View Article and Find Full Text PDFFront Immunol
September 2015
Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON , Canada.
Immune activation is critical to HIV infection and pathogenesis; however, our understanding of HIV innate immune activation remains incomplete. Recently we demonstrated that soluble TLR2 (sTLR2) physically inhibited HIV-induced NFκB activation and inflammation, as well as HIV-1 infection. In light of these findings, we hypothesized that HIV-1 structural proteins may serve as pathogen-associated molecular patterns (PAMPs) for cellular TLR2 heterodimers.
View Article and Find Full Text PDFSci Rep
July 2015
State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China.
The lignocellulose degradation capacity of filamentous fungi has been widely studied because of their cellulase hypersecretion. The p24 proteins in eukaryotes serve important functions in this secretory pathway. However, little is known about the functions of the p24 proteins in filamentous fungi.
View Article and Find Full Text PDFPLoS One
May 2013
Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
Interleukine-1β (IL-1β) is the most studied pro-inflammatory cytokine, playing a central role in the generation of systemic and local responses to infection, injury, and immunological challenges. In mammals, IL-1β is synthesized as an inactive 31 kDa precursor that is cleaved by caspase-1 generating a 17.5 kDa secreted active mature form.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!