Removal of Anthracene and Fluoranthene by Waxy Corn, Long Bean and Okra in Lead-Contaminated Soil.

Bull Environ Contam Toxicol

Department of Biology, Faculty of Science, Mahasakham University, Kantharawichai, Mahasarakham, 44150, Thailand,

Published: September 2015

The ability of waxy corn, long bean and okra to remove two polycyclic aromatic hydrocarbons (PAHs) from soil containing 0.63 mg Pb kg(-1) dry soil was assessed. The presence of Pb did not reduce the ability of these plants to remove the PAHs from soil. About 49 % of anthracene and 77 % of fluoranthene were removed from Pb-spiked or non-spiked soil, respectively, after 30 days. Among the plants, okra was the most efficient at removing anthracene and fluoranthene in the presence or absence of Pb in soil after 30 days. Pb did not affect fluoranthene removal, but stimulated the removal of anthracene, by long bean, waxy corn and okra. However, growth of long bean and waxy corn was poor in Pb-spiked soil and waxy corn plants died around 22 days after transplantation. The results show some promise in using plants to remove PAHs from soil which is also co-contaminated with Pb.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-015-1587-4DOI Listing

Publication Analysis

Top Keywords

waxy corn
20
long bean
16
anthracene fluoranthene
12
pahs soil
12
removal anthracene
8
corn long
8
bean okra
8
soil
8
plants remove
8
remove pahs
8

Similar Publications

Waxy maize is highly preferred diet in developing countries due to its high amylopectin content. Enriching amylopectin in biofortified maize meets food security and fulfils the demand of rising industrial applications, especially bioethanol. The mutant waxy1 (wx1) gene is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications.

View Article and Find Full Text PDF

To achieve good agricultural practices and maximize the economic yield of corn, farmers should reduce the use of inorganic fertilizers. A field experiment was conducted in the Chonnabot district, Khon Kaen province, Thailand, during the 2022 and 2023 growing seasons. The aim was to assess the impact of different organic fertilizers and their combinations on the growth and yield of commercial sweet corn ( L.

View Article and Find Full Text PDF

The cuticle, an extracellular hydrophobic layer impregnated with waxy lipids, serves as the primary interface between plant leaves and their environment and is thus subject to external cues. A previous study on poplar leaves revealed that environmental conditions outdoors promoted the deposition of about 10-fold more cuticular wax compared to the highly artificial climate of a growth chamber. Given that light was the most significant variable distinguishing the two locations, we hypothesized that the quantity of light might serve as a key driver of foliar wax accumulation.

View Article and Find Full Text PDF

Mechanism analysis for the differences in multi-level structure, enzyme accessibility and pasting properties of starch granules caused by different hydrolysis pathways of maltogenic α-amylase.

Food Chem

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.

The effect of pores distribution on the multi-scale structure, enzyme accessibility, and pasting properties of the waxy maize starch granules with the same degree of hydrolysis were examined. Increased maltogenic α-amylase (MA) dosage obviously increased the shallow pores number and the roughness, whereas extended time increased the holes depth. Despite achieving the same hydrolysis degree and specific surface area, samples with numerous shallow holes exhibited a higher mass fractal dimension, a lower, peak viscosity, final viscosity and setback.

View Article and Find Full Text PDF

Heterogeneous amylopectin delays short-term retrogradation via fabricating a binary gel network within steamed cold noodles.

Food Res Int

January 2025

Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, China. Electronic address:

This study aimed to investigate the influence of heterogeneous amylopectin (waxy corn starch, WCS) on the retrogradation of wheat starch (WS), hoping to provide a new idea for alleviating the retrogradation of steamed cold noodles. The chain length distribution data confirmed the formation of a binary gel network resulting from the heterogeneous amylopectin structure between WCS and WS. With the increase of WCS concentration, the modulus and setback value of WS-WCS binary gel decreased, which was attributed to the newly built network structure hindering the aggregation of WS molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!