We investigated the retention of Cr(VI) in three subsoils with low organic matter content in laboratory experiments at concentration levels relevant to represent leachates from construction and demolition waste (C&DW) reused as unbound material in road construction. The retention mechanism appeared to be reduction and subsequent precipitation as Cr(III) on the soil. The reduction process was slow and in several experiments it was still proceeding at the end of the six-month experimental period. The overall retention reaction fit well with a second-order reaction governed by actual Cr(VI) concentration and reduction capacity of the soil. The experimentally determined reduction capacities and second-order kinetic parameters were used to model, for a 100-year period, the one-dimensional migration of Cr(VI) in the subsoil under a layer of C&DW. The resulting Cr(VI) concentration would be negligible below 7-70 cm depth. However, in rigid climates and with high water infiltration through the road pavement, the reduction reaction could be so slow that Cr(VI) might migrate as deep as 200 cm under the road. The reaction parameters and the model can form the basis for systematically assessing under which scenarios Cr(VI) from C&DW could lead to an environmental issue for ground- and receiving surface waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2015.06.025DOI Listing

Publication Analysis

Top Keywords

construction demolition
8
demolition waste
8
crvi concentration
8
parameters model
8
crvi
6
reduction
5
soil retention
4
retention hexavalent
4
hexavalent chromium
4
chromium released
4

Similar Publications

The quality of indoor air is dependent on a number of factors, including the presence of microorganisms that colonize the building materials. The potential for health risks associated with microbial contamination is a significant concern during the renovation of buildings. The aim of this study was to assess the impact of two reconstruction methods for historic buildings on air quality.

View Article and Find Full Text PDF

The contamination levels of recycled aggregates from construction and demolition waste in compliance with Italian and Spanish regulations.

Environ Sci Pollut Res Int

January 2025

Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.

The aim of this study is to perform a comparative analysis of Italian and Spanish regulations for construction and demolition (C&D) waste management, to produce recycled aggregates (RAs). Furthermore, this study seeks to compare the results derived from the examination of leaching test results from RAs collected in both countries to identify the most critical pollutants. Our research involved a comprehensive comparison and analysis of waste management regulations in Italy and Spain, highlighting both commonalities and disparities.

View Article and Find Full Text PDF

The present research incorporates five AI methods to enhance and forecast the characteristics of building envelopes. In this study, Response Surface Methodology (RSM), Support Vector Machine (SVM), Gradient Boosting (GB), Artificial Neural Networks (ANN), and Random Forest (RF) machine learning method for optimization and predicting the mechanical properties of natural fiber addition incorporated with construction and demolition waste (CDW) as replacement of Fine Aggregate in Paver blocks. In this study, factors considered were cement content, natural fine aggregate, CDW, and coconut fibre, while the resulting measure was the machinal properties of the paver blocks.

View Article and Find Full Text PDF

Environmental and Economic LCA Comparison of Flexural Strengthening Solutions for a Reinforced Concrete Beam.

Materials (Basel)

November 2024

Civil Engineering Research and Innovation for Sustainability (CERIS), Department of Civil Engineering, Architecture and Environment, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.

The construction sector is one of the largest creators and distributors of wealth, contributing to economic growth worldwide. However, this economic growth comes together with very high environmental impacts. Thus, rehabilitation solutions that can adapt the current building stock to today's structural requirements are needed, increasing structural safety, while avoiding the production of demolition waste and the extraction of virgin raw materials, hence lowering the construction sector's environmental impacts.

View Article and Find Full Text PDF

This study investigates the potential use of recycled concrete aggregate (RCA), fly ash (FA), and their mixture (RCA+FA) as backfill materials for shallow vertical ground heat exchangers (GHEs). Granulometric, aerometric, and Proctor compaction tests were conducted to determine soil gradation, the void ratio, and the optimal moisture content (OMC) for maximum dry density. RCA demonstrated efficient compaction at lower moisture levels, while FA required higher moisture to reach maximum density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!