Traveling waves in the inner ear exhibit an amplitude peak that shifts with frequency. The peaking is commonly believed to rely on motile processes that amplify the wave by inserting energy. We recorded the vibrations at adjacent positions on the basilar membrane in sensitive gerbil cochleae and tested the putative power amplification in two ways. First, we determined the energy flux of the traveling wave at its peak and compared it to the acoustic power entering the ear, thereby obtaining the net cochlear power gain. For soft sounds, the energy flux at the peak was 1 ± 0.6 dB less than the middle ear input power. For more intense sounds, increasingly smaller fractions of the acoustic power actually reached the peak region. Thus, we found no net power amplification of soft sounds and a strong net attenuation of intense sounds. Second, we analyzed local wave propagation on the basilar membrane. We found that the waves slowed down abruptly when approaching their peak, causing an energy densification that quantitatively matched the amplitude peaking, similar to the growth of sea waves approaching the beach. Thus, we found no local power amplification of soft sounds and strong local attenuation of intense sounds. The most parsimonious interpretation of these findings is that cochlear sensitivity is not realized by amplifying acoustic energy, but by spatially focusing it, and that dynamic compression is realized by adjusting the amount of dissipation to sound intensity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569608 | PMC |
http://dx.doi.org/10.1007/s10162-015-0529-5 | DOI Listing |
Discov Oncol
January 2025
Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA.
MYC is one of the most deregulated oncogenic transcription factors in human cancers. MYC amplification/or overexpression is most common in Group 3 medulloblastoma and is positively associated with poor prognosis. MYC is known to regulate the transcription of major components of protein synthesis (translation) machinery, leading to promoted rates of protein synthesis and tumorigenesis.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
Aptamers are synthetic oligonucleotides that bind with high affinity and specificity to various targets, making them invaluable for diagnostics, therapeutics, and biosensing. Microfluidic platforms can improve the efficiency and scalability of aptamer selection, especially through advancements in systematic evolution of ligands by exponential enrichment (SELEX) methods. Microfluidic SELEX methods are less time-consuming and labor-intensive and include critical steps like library preparation, binding, partitioning, and amplification.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, 8000 Aarhus, Denmark.
Malaria poses a serious global health problem, with half the world population being at risk. Regular screening is crucial for breaking the transmission cycle and combatting the disease spreading. However, current diagnostic tools relying on blood samples face challenges in many malaria-epidemic areas.
View Article and Find Full Text PDFMicroorganisms
December 2024
Health Program, International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709, Kenya.
and are tick-borne pathogens, posing significant threats to the health and productivity of cattle in tropical and subtropical regions worldwide. Currently, detection of and in infected animals relies primarily on microscopic examination of Giemsa-stained blood or organ smears, which has limited sensitivity. Molecular methods offer higher sensitivity but are costly and impractical in resource-limited settings.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Applied Physics Department, Engineering Research Institute of Aragon (I3A), Faculty of Science, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
Active waveguide Bragg gratings (AWBGs) are promising photonic structures that combine the very efficient reflective properties of a Bragg grating with the power amplification character of rare earths. This combination may lead to a potential monolithic laser under the proper conditions. However, the photonic response of these structures highly depends on the grating design and operating parameters, so modeling its response for their laser performance is a must.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!