Recent Advances in Biocatalytic Promiscuity: Hydrolase-Catalyzed Reactions for Nonconventional Transformations.

Chem Rec

Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias, Universidad de Oviedo, Avenida Julián Clavería s/n, Oviedo, 33006, Spain.

Published: August 2015

Enzymes have emerged in recent decades as ideal catalysts for synthetic transformations under mild reaction conditions. Their capacity to accelerate a myriad of biotransformations with high levels of selectivity and broad substrate specificity including excellent atom economy has led to a current full recognition. The six classes of enzymes (oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases) possess outstanding abilities to perform specific modifications in target molecules. Nevertheless, in the last fifteen years, novel examples have appeared related to nonconventional processes catalyzed by various classes of biocatalysts. Amongst these, hydrolases have received special attention since they display remarkable activities in initially unexpected reactions such as carbon-carbon and carbon-heteroatom bond-formation reactions, oxidative processes and novel hydrolytic transformations. In this review, the main findings in this area will be disclosed, highlighting the catalytic properties of hydrolases not only to catalyze single processes but also multicomponent and tandem nonconventional reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.201500008DOI Listing

Publication Analysis

Top Keywords

advances biocatalytic
4
biocatalytic promiscuity
4
promiscuity hydrolase-catalyzed
4
reactions
4
hydrolase-catalyzed reactions
4
reactions nonconventional
4
nonconventional transformations
4
transformations enzymes
4
enzymes emerged
4
emerged decades
4

Similar Publications

Integrating Enzymes with Reticular Frameworks To Govern Biocatalysis.

Angew Chem Int Ed Engl

January 2025

Sun Yat-Sen University, School of Chemistry, 135 Xingang West, 510275, Guangzhou, CHINA.

Integrating enzymes with reticular frameworks offers promising avenues for access to functionally tailorable biocatalysis. This Minireview explores recent advances in enzyme-reticular frameworks hybrid biocomposites, focusing on the utilization of porous reticular frameworks, including metal-organic frameworks, covalent-organic frameworks, and hydrogen-bonded organic frameworks, to regulate the reactivity of an enzyme encapsulated inside mainly by pore infiltration and in situ encapsulation strategies. We highlight how pore engineering and host-guest interfacial interactions within reticular frameworks create tailored microenvironments that substantially impact the mass transfer and enzyme's conformation, leading to biocatalytic rate enhancement, or imparting enzyme with non-native biocatalytic functions including substrate-selectivity and new activity.

View Article and Find Full Text PDF

Enzymes are molecular machines optimized by nature to allow otherwise impossible chemical processes to occur. Their design is a challenging task due to the complexity of the protein space and the intricate relationships between sequence, structure, and function. Recently, large language models (LLMs) have emerged as powerful tools for modeling and analyzing biological sequences, but their application to protein design is limited by the high cardinality of the protein space.

View Article and Find Full Text PDF

Kitasatospora continue to be a rich source of chemically diverse and bioactive peptide natural products. This review highlights two strategies in peptide natural products research of Kitasatospora: (1) a natural products-first approach guided by a major compound, biological activity, or genomic analysis, and (2) an enzyme-first approach guided by bioinformatic tools to construct a sequence similarity network for the discovery of biosynthetic enzymes. The structures of peptides, biosynthetic origins of unique building blocks, recent reports of post-translational modifying enzymes for constructing these peptides, and knowledge gaps in biosynthesis will also be presented.

View Article and Find Full Text PDF

Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.

Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!