We describe the impact of two propeptides and PedC on the production yield and the potency of recombinant pediocins produced in Lactococcus lactis. On the one hand, the sequences encoding the propeptides SD or LEISSTCDA were inserted between the sequence encoding the signal peptide of Usp45 and the structural gene of the mature pediocin PA-1. On the other hand, the putative thiol-disulfide oxidoreductase PedC was coexpressed with pediocin. The concentration of recombinant pediocins produced in supernatants was determined by enzyme-linked immunosorbent assay. The potency of recombinant pediocins was investigated by measuring the minimal inhibitory concentration by agar well diffusion assay. The results show that propeptides SD or LEISSTCDA lead to an improved secretion of recombinant pediocins with apparently no effect on the antibacterial potency and that PedC increases the potency of recombinant pediocin. To our knowledge, this study reveals for the first time that pediocin tolerates fusions at the N-terminal end. Furthermore, it reveals that only expressing the pediocin structural gene in a heterologous host is not sufficient to get an optimal potency and requires the accessory protein PedC. In addition, it can be speculated that PedC catalyses the correct formation of disulfide bonds in pediocin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919988 | PMC |
http://dx.doi.org/10.1111/1751-7915.12285 | DOI Listing |
Biotechnol Biofuels Bioprod
December 2024
Research Group Bioprocess Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1A, Vienna, A-1060, Austria.
Background: Biorefineries usually focus on the production of low-value commodities, such as bioethanol, platform chemicals or single cell protein. Shifting production to bioactive compounds, such as antimicrobial peptides, could provide an opportunity to increase the economic viability of biorefineries.
Results: Recombinant production of the antimicrobial peptide pediocin PA-1 in Corynebacterium glutamicum was transferred from yeast extract-based media to minimal media based on lignocellulosic spent sulfite liquor.
Probiotics Antimicrob Proteins
May 2024
State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, People's Republic of China.
In this study, Pediococcus pentosaceus C-2-1 and C23221 contained genes encoding penocin and pediocin PA-1, mined by antiSMASH. The penocin structural gene pedA from Pediococcus pentosaceus C-2-1 was successfully expressed in Escherichia coli BL21. The presence of a 6.
View Article and Find Full Text PDFMicrob Cell Fact
February 2023
Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany.
Background: Pediocin PA-1 is a bacteriocin of recognized value with applications in food bio-preservation and the medical sector for the prevention of infection. To date, industrial manufacturing of pediocin PA-1 is limited by high cost and low-performance. The recent establishment of the biotechnological workhorse Corynebacterium glutamicum as recombinant host for pediocin PA-1 synthesis displays a promising starting point towards more efficient production.
View Article and Find Full Text PDFMicrob Cell Fact
May 2022
State Key Laboratory of Direct-Fed Microbial Engineering, Beijing, 100192, China.
Listeria monocytogenes is a food-borne pathogen. Pediocin is a group IIα bacteriocin with anti-listeria activity that is naturally produced by Pediococcus acidilactic and Lactobacillus plantarum. The pedA/papA gene encodes pediocin/plantaricin.
View Article and Find Full Text PDFMetab Eng
November 2021
Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany. Electronic address:
Bacteriocins are antimicrobial peptides produced by bacteria to inhibit competitors in their natural environments. Some of these peptides have emerged as commercial food preservatives and, due to the rapid increase in antibiotic resistant bacteria, are also discussed as interesting alternatives to antibiotics for therapeutic purposes. Currently, commercial bacteriocins are produced exclusively with natural producer organisms on complex substrates and are sold as semi-purified preparations or crude fermentates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!