Fat-associated lymphoid clusters (FALCs) are a type of lymphoid tissue associated with visceral fat. Here we found that the distribution of FALCs was heterogeneous, with the pericardium containing large numbers of these clusters. FALCs contributed to the retention of B-1 cells in the peritoneal cavity through high expression of the chemokine CXCL13, and they supported B cell proliferation and germinal center differentiation during peritoneal immunological challenges. FALC formation was induced by inflammation, which triggered the recruitment of myeloid cells that expressed tumor-necrosis factor (TNF) necessary for signaling via the TNF receptors in stromal cells. Natural killer T cells (NKT cells) restricted by the antigen-presenting molecule CD1d were likewise required for the inducible formation of FALCs. Thus, FALCs supported and coordinated the activation of innate B cells and T cells during serosal immune responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4512620 | PMC |
http://dx.doi.org/10.1038/ni.3215 | DOI Listing |
Oncoimmunology
December 2024
Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA.
Adv Healthc Mater
October 2024
Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, 87131, USA.
Intraperitoneal (IP) administration of immunogenic mesoporous silica nanoparticles (iMSN) in a mouse model of metastatic ovarian cancer promotes the development of tumor-specific CD8 T cells and protective immunity. IP delivery of iMSN functionalized with the Toll-like receptor (TLR) agonists polyethyleneimine (PEI), CpG oligonucleotide, and monophosphoryl lipid A (MPLA) stimulated rapid uptake by all peritoneal myeloid subsets. Myeloid cells quickly transported iMSN to milky spots and fat-associated lymphoid clusters (FALCs) present in tumor-burdened adipose tissues, leading to a reduction in suppressive T cells and an increase in activated memory T cells.
View Article and Find Full Text PDFGut Microbes
June 2024
Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
Despite the observed decrease in liver fat associated with metabolic-associated fatty liver disease (MAFLD) in mice following fecal microbiota transplantation, the clinical effects and underlying mechanisms of washed microbiota transplantation (WMT), a refined method of fecal microbiota transplantation, for the treatment of MAFLD remain unclear. In this study, both patients and mice with MAFLD exhibit an altered gut microbiota composition. WMT increases the levels of beneficial bacteria, decreases the abundance of pathogenic bacteria, and reduces hepatic steatosis in MAFLD-affected patients and mice.
View Article and Find Full Text PDFFront Immunol
June 2024
Institute of Molecular Medicine, Feinstein Institutes for Medical Research, New York, NY, United States.
Fibroblastic reticular cells (FRCs) are a subpopulation of stromal cells modulating the immune environments in health and disease. We have previously shown that activation of TLR9 signaling in FRC in fat-associated lymphoid clusters (FALC) regulate peritoneal immunity via suppressing immune cell recruitment and peritoneal resident macrophage (PRM) retention. However, FRCs are heterogeneous across tissues and organs.
View Article and Find Full Text PDFImmunol Rev
July 2024
Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Well known functions of adipose tissue include energy storage, regulation of thermogenesis, and glucose homeostasis-each of which are associated with the metabolic functions of fat. However, adipose tissues also have important immune functions. In this issue of Immunological Reviews, we present a series of articles that highlight the immune functions of adipose tissue, including the roles of specialized adipose-resident immune cells and fat-associated lymphoid structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!