The rate of neurogenesis is determined by 1) the number of neural stem/progenitor cells (NSCs), 2) proliferation of NSCs, 3) neuron lineage specification, and 4) survival rate of the newborn neurons. Aging lowers the rate of hippocampal neurogenesis, while exercise (Ex) increases this rate. However, it remains unclear which of the determinants are affected by aging and Ex. We characterized the four determinants in different age groups (3, 6, 9, 12, 21 months) of mice that either received one month of Ex training or remained sedentary. Bromodeoxyuridine (BrdU) was injected two hours before sacrificing the mice to label the proliferating cells. The results showed that the number of newborn neurons massively decreased (>95%) by the time the mice reached nine months of age. The number of NSC was mildly reduced during aging, while Ex delayed such decline. The proliferation rates were greatly decreased by the time the mice were 9-month-old and Ex could not improve the rates. The rates of neuron specification were decreased during aging, while Ex increased the rates. The survival rate was not affected by age or Ex. Aging greatly reduced newborn neuron maturation, while Ex potently enhanced it. In conclusion, age-associated decline of hippocampal neurogenesis is mainly caused by reduction of NSC proliferation. Although Ex increases the NSC number and neuron specification rates, it doesn't restore the massive decline of NSC proliferation rate. Hence, the effect of Ex on the rate of hippocampal neurogenesis during aging is limited, but Ex does enhance the maturation of newborn neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493040 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132152 | PLOS |
EMBO Rep
January 2025
Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.
Hierarchy provides a survival advantage to social animals in challenging circumstances. In mice, social dominance is associated with trait anxiety which is regulated by adult hippocampal neurogenesis. Here, we test whether adolescent hippocampal neurogenesis may regulate social dominance behavior in adulthood.
View Article and Find Full Text PDFCureus
December 2024
Department of Physiology, Touro College of Osteopathic Medicine, Middletown, USA.
Down syndrome (DS) is a genetic intellectual disorder caused by trisomy of chromosome 21 (Hsa21) and presents with a variety of phenotypes. The correlation between the chromosomal abnormality and the resulting symptoms is unclear, partly due to the spectrum of impairments observed. However, it has been determined that trisomy 21 contributes to neurodegeneration and impaired neurodevelopment resulting from decreased neurotransmission, neurogenesis, and synaptic plasticity.
View Article and Find Full Text PDFNeurosci Lett
January 2025
Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan. Electronic address:
Disruption of gut microbiota balance is known to contribute to the development of anxiety; however, it remains unclear whether dysbiosis-induced anxiety involves the glycogen synthase kinase-3β (GSK-3β)/cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) pathway and neurogenesis in the ventral hippocampal dentate gyrus (DG). In this study, Male ddY mice were administered an antibacterial cocktail to induce dysbiosis. The dysbiosis model displayed anxiety-like behaviors in the hole-board and elevated plus-maze tests, decreased the phosphorylation levels of GSK-3β (Ser9) and CREB, decreased the expression level of BDNF in the ventral hippocampus, and reduced neurogenesis in the ventral hippocampal DG.
View Article and Find Full Text PDFPsychoradiology
December 2024
Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China.
Background: The hippocampus has been widely reported to be involved in the neuropathology of major depressive disorder (MDD). All the previous researches adopted group-level hippocampus subregions atlas to investigate abnormal functional connectivities in MDD in absence of capturing individual variability. In addition, the molecular basis of functional impairments of hippocampal subregions in MDD remains elusive.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China.
Objective: Ischemia-reperfusion of the abdominal aorta often results in damage to distant organs, such as the heart and brain. This cellular heterogeneity within affected tissues complicates the roles of specific cell subsets in abdominal aorta occlusion model (AAO) injury. However, cell type-specific molecular pathology in the hippocampus after ischemia is poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!