The entomopathogen Bacillus thuringiensis is equipped with multiple virulent factors. The genome sequence of B. thuringiensis YBT1520 revealed the presence of a two-domain protein named Nel which is composed of a necrosis-inducing phytophthora protein 1-like domain found in phytopathogens and a ricin B-like lectin domain. The merging of two distantly related domains is relatively rare. Nel induced necrosis and pathogen-triggered immunity (PTI) on model plants. The Nel also exhibited inhibition activity to nematode. Microscopic observation showed that the toxicity of Nel to nematodes targets the intestine. Quantitative proteomics revealed that Nel stimulated the host defence. The Nel thus possesses dual roles, as both toxin and elicitor. Remarkably, the Nel protein triggered a similar response, induction of the heat shock pathway and the necrosis pathway, in both model plants and nematodes. The unusual ability of Nel to function across kingdom suggests a highly conserved mechanism in eukaryotes that predates the divergence of plants and animal. It is also speculated that the two-domain protein is the result of horizontal gene transfer (HGT) between phytopathogens and entomopathogens. Our results provide an example that HGT occurs between members of different species or even genera with lower frequency are particularly important for evolution of new bacterial pathogen lineages with new virulence. Bacillus thuringiensis occupies the same ecological niches, plant and soil, as phytopathogens, providing the opportunity for gene exchange.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.12968DOI Listing

Publication Analysis

Top Keywords

two-domain protein
12
heat shock
8
shock pathway
8
pathway necrosis
8
necrosis pathway
8
pathway model
8
bacillus thuringiensis
8
nel
8
model plants
8
protein triggers
4

Similar Publications

Replacement of the essential catalytic aspartate with serine leads to an active form of copper-containing nitrite reductase from the denitrifier Sinorhizobium meliloti 2011.

Biochim Biophys Acta Proteins Proteom

December 2024

Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina.

Article Synopsis
  • The study details the characterization of a mutated variant of copper-containing nitrite reductase (SmNirK) from S. meliloti, where the catalytic aspartate (Asp) is replaced with serine (Ser) via site-directed mutagenesis.
  • The D134S variant retains the homotrimer structure and similar T1 electron transfer center to the wild-type, but shows altered electronic properties in the T2 active site, impacting its enzymatic efficiency and pH dependence.
  • EPR studies reveal significant changes in the T2 properties due to the mutation, highlighting the role of T2 ligands in catalysis and suggesting a potential mechanism for electron transfer influenced by the Asp/Ser switch.
View Article and Find Full Text PDF

Developing intranasal vaccines against pandemics and devastating airborne infectious diseases is imperative. The superiority of intranasal vaccines over injectable systemic vaccines is evident, but developing effective intranasal vaccines presents significant challenges. Fusing a protein antigen with the catalytic domain of cholera toxin (CTA1) and the two-domain D of staphylococcal protein A (DD) has significant potential for intranasal vaccines.

View Article and Find Full Text PDF

Pheromones play a pivotal role in chemical communication across various taxa, with protein-based pheromones being particularly significant in amphibian courtship and reproduction. In this study, we investigate the Emei music frog (Nidirana daunchina), which utilizes both acoustic and chemical signals for communication. Base on a de novo assembled genome of a male Emei music frog, we identify substantial expansion in four pheromone-related gene families associated with chemical communication.

View Article and Find Full Text PDF
Article Synopsis
  • Polyphosphate kinase 2 (PPK2) enzymes are key to transferring phosphate to nucleotides and are categorized into three classes, each with unique preferences.
  • The study of PPK2's distribution among prokaryotes helps understand its evolutionary history and potential adaptations across various species.
  • Observations revealed a significant preference for Class I enzymes in species with multiple PPK2 genes, alongside insights about gene duplication and possible functional versatility that challenge previous understandings of PPK2 evolution.
View Article and Find Full Text PDF

Zinc and RNA Binding Is Linked to the Conformational Flexibility of ZRANB2: A CCCC-Type Zinc Finger Protein.

Biochemistry

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States.

Ran-binding domain-containing protein 2 (ZRANB2) is a zinc finger (ZF) protein that plays a key role in alternative splicing. ZRANB2 is composed of two ZF domains that contain four invariant cysteine residues per domain. ZRANB2 binds RNA targets that contain AGGUAA sequence motifs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!