A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrical Stimulation of Human Mesenchymal Stem Cells on Conductive Nanofibers Enhances their Differentiation toward Osteogenic Outcomes. | LitMetric

Tissue scaffolds allowing the behavior of the cells that reside within them to be controlled are of particular interest for tissue engineering. Herein, the preparation of conductive fiber-based bone tissue scaffolds (nonwoven mats of electrospun polycaprolactone with an interpenetrating network of polypyrrole and polystyrenesulfonate) is described that enable the electrical stimulation of human mesenchymal stem cells to enhance their differentiation toward osteogenic outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201500233DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
8
stimulation human
8
human mesenchymal
8
mesenchymal stem
8
stem cells
8
differentiation osteogenic
8
osteogenic outcomes
8
tissue scaffolds
8
cells conductive
4
conductive nanofibers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!