The down-modulation of the β-catenin antagonist Chibby 1 (CBY1) associated with the BCR-ABL1 fusion gene of chronic myeloid leukemia (CML) contributes to the aberrant activation of β-catenin, particularly in leukemic stem cells (LSC) resistant to tyrosine kinase (TK) inhibitors. It is, at least partly, driven by transcriptional events and gene promoter hyper-methylation. Here we demonstrate that it also arises from reduced protein stability upon binding to 14-3-3σ adapter protein. CBY1/14-3-3σ interaction in BCR-ABL1+ cells is mediated by the fusion protein TK and AKT phosphorylation of CBY1 at critical serine 20, and encompasses the 14-3-3σ binding modes I and II involved in the binding with client proteins. Moreover, it is impaired by c-Jun N-terminal kinase (JNK) phosphorylation of 14-3-3σ at serine 186, which promotes dissociation of client proteins. The ubiquitin proteasome system UPS participates in reducing stability of CBY1 bound with 14-3-3σ through enhanced SUMOylation. Our results open new routes towards the research on molecular pathways promoting the proliferative advantage of leukemic hematopoiesis over the normal counterpart.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492953 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131074 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!