By using a strategy of introducing hydrophobic groups to the linkers, a hydrostable MOF was constructed based on 5-nitroisophthalate and 2,2'-dimethyl-4,4'-bipyridine coligands, revealing a 3D dia topology structure with a 1D channel parallel to the c axis. TGA, PXRD, and water vapor sorption results show high thermal and water stability for the framework. The framework is very porous and possesses not only high busulfan payloads with an encapsulation efficiency up to 21.5% (17.2 wt %) but also very high CO2 selective capture compared with that of other small gases (i.e., CH4, N2, O2, CO, and H2) at 298 K based on molecular simulations due to the pore surface being populated by methyl and nitryl groups. Furthermore, in vitro MTT assays were conducted on four different cells lines with increasing concentrations of the framework, and the results showed that the framework was nontoxic (cell viability >80%) in spite of the concentrations up to 500 μg/mL.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.5b00335DOI Listing

Publication Analysis

Top Keywords

framework framework
8
framework
5
hydrostable nitryl/methyl-functionalized
4
nitryl/methyl-functionalized metal-organic
4
metal-organic framework
4
framework drug
4
drug delivery
4
delivery highly
4
highly selective
4
selective co2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!