Focused Clinical Question: Can emerging technologies for periodontal regeneration become clinical reality? Summary: Emerging technologies are presenting options to hopefully improve the outcomes of regeneration in challenging clinical scenarios. Cellular allografts represent a current technology in which cells and scaffolds are being delivered directly to the periodontal lesion. Recombinant human fibroblast growth factor 2 and teriparatide (parathyroid 1-34) have each been tested in controlled prospective human randomized clinical trials, and both have been shown to have potential for periodontal regeneration. These examples, as well as other emerging technologies, show promise for continued advancement in the field of periodontal regenerative therapy. Conclusions: At present, there are indications that emerging technologies can be used successfully for periodontal regeneration. Case reports and clinical trials are being conducted with a variety of emerging technologies. However, many are yet to be approved by a regulatory agency, or there is a lack of evidence-based literature to validate their expanded use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486332 | PMC |
http://dx.doi.org/10.1902/cap.2015.140052 | DOI Listing |
Int Dent J
December 2024
King Salman Hospital, Ministry of Health, Riyadh, Saudi Arabia.
Introduction And Aims: Dental practices pose a high risk of microbial contamination due to frequent exposure to bodily fluids like saliva and blood. Bioengineering innovations have emerged as vital tools to enhance infection control in dental settings. This review aims to assess the global applications and effectiveness of these innovations, particularly focusing on antimicrobial biomaterials, sterilization techniques, and personal protective equipment (PPE).
View Article and Find Full Text PDFWater Res
December 2024
GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, Barcelona 08034, Spain. Electronic address:
Cyanobacterial wastewater-based biorefineries are a sustainable alternative to obtain high-value products with reduced costs. This study aimed to obtain phycobiliproteins and carotenoids, along with biogas from a wastewater-borne cyanobacterium grown in secondary effluent from an urban wastewater treatment plant, namely treated wastewater. For the first time, the presence of contaminants of emerging concern in concentrated pigment extracts was assessed.
View Article and Find Full Text PDFACS Sens
December 2024
Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, 100015Beijing, PR China.
Biomarkers contained in human exhaled breath are closely related to certain diseases. As a noninvasive, portable, and efficient health diagnosis method, the breath sensor has received considerable attention in recent years for early disease screening and prevention due to its user-friendly and easy-accessible features. Although some key challenges have been addressed, its capability to precisely monitor specific biomarkers of interest and its physiological relevance to health metrics is still to be ascertained.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
December 2024
Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow, 111123, Russia.
Purpose: Determining the primary origin of non-organ-confined neuroendocrine tumors (NETs) for accurate diagnosis and management. Neuroendocrine tumors are rare neoplasms with diverse clinical behaviors. Determining their primary origin remains challenging in cases of non-organ-confined NETs.
View Article and Find Full Text PDFAdv Anat Embryol Cell Biol
January 2025
Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil.
In this chapter, we explore the multifaceted roles of extracellular vesicles (EVs) in ovarian biology, focusing on their contributions to folliculogenesis, oocyte competence, corpus luteum function, and immune response regulation. EVs, particularly those derived from follicular fluid (ffEVs), are crucial mediators of cell-to-cell communication within the ovarian follicle, influencing processes such as meiotic progression, stress response, and hormonal regulation. We review preexisting literature, highlighting key findings on the molecular cargo of EVs, such as miRNAs and proteins, and their involvement in regulating the function of the follicle cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!