[Preparation and identification of DNA G-quadruplex antibody].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China.

Published: July 2015

Objective: To construct a prokaryotic expression plasmid of DNA G-quadruplex antibody, express it in E.coli BL21 (DE3) bacterial expression system, purify and identify the antibody.

Methods: Chemically synthesized BG4 gene of DNA G-quadruplex antibodies was inserted into pSANG10 plasmid to construct DNA G-quadruplex antibody expression vector pSANG10-BG4. BL21 (DE3) as the host strain was utilized for self-induced expression of the protein. Osmotic lysis method was used for collecting this protein. Thereafter, the protein was purified by histidine tag affinity chromatography and identified by SDS-PAGE and Western blotting. The function of this protein was verified in SW480 colon cancer cells.

Results: Double enzyme digestion and gene sequencing confirmed that DNA G-quadruplex antibody expression vector was successfully constructed. The relative molecular mass (Mr) of this protein was 30 000 to 37 000. The protein in a soluble form was expressed in the periplasm of BL21. The protein was of the same size as expected.

Conclusion: The DNA G-quadruplex antibody has been successfully prepared.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dna g-quadruplex
24
g-quadruplex antibody
16
bl21 de3
8
antibody expression
8
expression vector
8
protein
7
dna
6
g-quadruplex
6
expression
5
[preparation identification
4

Similar Publications

This paper presents a copper(I)-catalyzed intramolecular tandem acylation/-arylation of methyl 2-[2-(2-bromophenyl)acetamido]benzoates for the synthesis of benzofuro[3,2-]quinolin-6(5)-ones under mild conditions. The combination of CuI, 1,10-phenanthroline, and KCO in DMSO was found to be the optimal reaction condition, producing the target products in high yields (84-99%) at 70 °C for 16 h. The tandem reaction was applicable to substrates bearing halo, electron-withdrawing, and electron-donating groups at their phenyl moieties with a broad substrate scope.

View Article and Find Full Text PDF

Effective multicolor visual biosensor for ochratoxin A detection enabled by DNAzyme catalysis and gold nanorod etching.

Mikrochim Acta

December 2024

Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.

A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy.

View Article and Find Full Text PDF

Design and synthesis of novel structures with anti-tumor effects: Targeting telomere G-quadruplex and hTERT.

Bioorg Med Chem Lett

December 2024

Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, Harbin, PR China. Electronic address:

The telomeric G-quadruplex (G4) along with the telomerase catalytic subunit hTERT are crucial in the extension of telomeres. Tumor cells can establish replicative immortality by activating the telomere-maintenance mechanism (TMM).Small molecule ligands can limit cancer telomere lengthening by by targeting at G4 and hTERT.

View Article and Find Full Text PDF

Free Energy-Based Refinement of DNA Force Field via Modification of Multiple Nonbonding Energy Terms.

J Chem Inf Model

December 2024

Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea.

The amber-OL21 force field (ff) was developed to better describe noncanonical DNA, including Z-DNA. Despite its improvements for DNA simulations, this study found that OL21's scope of application was limited by embedded ff artifacts. In a benchmark set of seven DNA molecules, including two double-stranded DNAs transitioning between B- and Z-DNA and five single-stranded DNAs folding into mini-dumbbell or G-quadruplex structures, the free energy landscapes obtained using OL21 revealed several issues: Z-DNA was overly stabilized; misfolded states in mini-dumbbell DNAs were most stable; DNA GQ folding was consistently biased toward an antiparallel topology.

View Article and Find Full Text PDF

A subcellular selective APEX2-based proximity labeling used for identifying mitochondrial G-quadruplex DNA binding proteins.

Nucleic Acids Res

December 2024

Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.

G-quadruplexes (G4s), as an important type of non-canonical nucleic acid structure, have received much attention because of their regulations of various biological processes in cells. Identifying G4s-protein interactions is essential for understanding G4s-related biology. However, current strategies for exploring G4 binding proteins (G4BPs) include pull-down assays in cell lysates or photoaffinity labeling, which are lack of sufficient spatial specificity at the subcellular level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!